Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732869

RESUMO

Nuclear fusion is a potential source of energy that could supply the growing needs of the world population for millions of years. Several experimental thermonuclear fusion devices try to understand and control the nuclear fusion process. A very interesting diagnostic called Thomson scattering (TS) is performed in the Spanish fusion device TJ-II. This diagnostic takes images to measure the temperature and density profiles of the plasma, which is heated to very high temperatures to produce fusion plasma. Each image captures spectra of laser light scattered by the plasma under different conditions. Unfortunately, some images are corrupted by noise called stray light that affects the measurement of the profiles. In this work, we propose the use of deep learning models to reduce the stray light that appears in the diagnostic. The proposed approach utilizes a Pix2Pix neural network, which is an image-to-image translation based on a generative adversarial network (GAN). This network learns to translateimages affected by stray light to images without stray light. This allows for the effective removal of the noise that affects the measurements of the TS diagnostic, avoiding the need for manual image processing adjustments. The proposed method shows a better performance, reducing the noise up to 98% inimages, which surpassesprevious works that obtained 85% for the validation dataset.

2.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112236

RESUMO

This paper presents the design and implementation of a spherical robot with an internal mechanism based on a pendulum. The design is based on significant improvements made, including an electronics upgrade, to a previous robot prototype developed in our laboratory. Such modifications do not significantly impact its corresponding simulation model previously developed in CoppeliaSim, so it can be used with minor modifications. The robot is incorporated into a real test platform designed and built for this purpose. As part of the incorporation of the robot into the platform, software codes are made to detect its position and orientation, using the system SwisTrack, to control its position and speed. This implementation allows successful testing of control algorithms previously developed by the authors for other robots such as Villela, the Integral Proportional Controller, and Reinforcement Learning.

3.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015783

RESUMO

This article presents the development of a model of a spherical robot that rolls to move and has a single point of support with the surface. The model was developed in the CoppeliaSim simulator, which is a versatile tool for implementing this kind of experience. The model was tested under several scenarios and control goals (i.e., position control, path-following and formation control) with control strategies such as reinforcement learning, and Villela and IPC algorithms. The results of these approaches were compared using performance indexes to analyze the performance of the model under different scenarios. The model and examples with different control scenarios are available online.


Assuntos
Robótica , Algoritmos , Simulação por Computador , Aprendizagem , Robótica/métodos
4.
PLoS One ; 17(5): e0268199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613093

RESUMO

Scientists and astronomers have attached great importance to the task of discovering new exoplanets, even more so if they are in the habitable zone. To date, more than 4300 exoplanets have been confirmed by NASA, using various discovery techniques, including planetary transits, in addition to the use of various databases provided by space and ground-based telescopes. This article proposes the development of a deep learning system for detecting planetary transits in Kepler Telescope light curves. The approach is based on related work from the literature and enhanced to validation with real light curves. A CNN classification model is trained from a mixture of real and synthetic data. The model is then validated only with unknown real data. The best ratio of synthetic data is determined by the performance of an optimisation technique and a sensitivity analysis. The precision, accuracy and true positive rate of the best model obtained are determined and compared with other similar works. The results demonstrate that the use of synthetic data on the training stage can improve the transit detection performance on real light curves.


Assuntos
Aprendizado Profundo , Telescópios , Exobiologia/métodos , Meio Ambiente Extraterreno , Planetas
5.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967286

RESUMO

This work presents the development and implementation of a distributed navigation system based on object recognition algorithms. The main goal is to introduce advanced algorithms for image processing and artificial intelligence techniques for teaching control of mobile robots. The autonomous system consists of a wheeled mobile robot with an integrated color camera. The robot navigates through a laboratory scenario where the track and several traffic signals must be detected and recognized by using the images acquired with its on-board camera. The images are sent to a computer server that performs a computer vision algorithm to recognize the objects. The computer calculates the corresponding speeds of the robot according to the object detected. The speeds are sent back to the robot, which acts to carry out the corresponding manoeuvre. Three different algorithms have been tested in simulation and a practical mobile robot laboratory. The results show an average of 84% success rate for object recognition in experiments with the real mobile robot platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA