Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 7(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267857

RESUMO

Background: For more than 25 years, the golden mussel, Limnoperna fortunei, has aggressively invaded South American freshwaters, having travelled more than 5000 km upstream across 5 countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it. Findings: We assembled the 1.6-Gb genome into 20 548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60 717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. Conclusions: We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina paired-end, mate-paired, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei's genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma , Espécies Introduzidas , Mytilidae/genética , Proteínas/genética , Transcriptoma , Animais , Brasil , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Mytilidae/classificação , Fases de Leitura Aberta , Controle de Pragas , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo
2.
PLoS One ; 9(7): e102973, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047650

RESUMO

The success of the Asian bivalve Limnoperna fortunei as an invader in South America is related to its high acclimation capability. It can inhabit waters with a wide range of temperatures and salinity and handle long-term periods of air exposure. We describe the transcriptome of L. fortunei aiming to give a first insight into the phenotypic plasticity that allows non-native taxa to become established and widespread. We sequenced 95,219 reads from five main tissues of the mussel L. fortunei using Roche's 454 and assembled them to form a set of 84,063 unigenes (contigs and singletons) representing partial or complete gene sequences. We annotated 24,816 unigenes using a BLAST sequence similarity search against a NCBI nr database. Unigenes were divided into 20 eggNOG functional categories and 292 KEGG metabolic pathways. From the total unigenes, 1,351 represented putative full-length genes of which 73.2% were functionally annotated. We described the first partial and complete gene sequences in order to start understanding bivalve invasiveness. An expansion of the hsp70 gene family, seen also in other bivalves, is present in L. fortunei and could be involved in its adaptation to extreme environments, e.g. during intertidal periods. The presence of toll-like receptors gives a first insight into an immune system that could be more complex than previously assumed and may be involved in the prevention of disease and extinction when population densities are high. Finally, the apparent lack of special adaptations to extremely low O2 levels is a target worth pursuing for the development of a molecular control approach.


Assuntos
Mytilidae/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Espécies Introduzidas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA