RESUMO
Recently, we proposed an efficient ILP formulation [Rubert DP, Martinez FV, Braga MDV, Natural family-free genomic distance, Algorithms Mol Biol 16:4, 2021] for exactly computing the rearrangement distance of two genomes in a family-free setting. In such a setting, neither prior classification of genes into families, nor further restrictions on the genomes are imposed. Given two genomes, the mentioned ILP computes an optimal matching of the genes taking into account simultaneously local mutations, given by gene similarities, and large-scale genome rearrangements. Here, we explore the potential of using this ILP for inferring groups of orthologs across several species. More precisely, given a set of genomes, our method first computes all pairwise optimal gene matchings, which are then integrated into gene families in the second step. Our approach is implemented into a pipeline incorporating the pre-computation of gene similarities. It can be downloaded from gitlab.ub.uni-bielefeld.de/gi/FFGC. We obtained promising results with experiments on both simulated and real data.
Assuntos
Genoma , Modelos Genéticos , Algoritmos , Rearranjo Gênico , Genômica , HumanosRESUMO
BACKGROUND: Computationally inferred ancestral genomes play an important role in many areas of genome research. We present an improved workflow for the reconstruction from highly diverged genomes such as those of plants. RESULTS: Our work relies on an established workflow in the reconstruction of ancestral plants, but improves several steps of this process. Instead of using gene annotations for inferring the genome content of the ancestral sequence, we identify genomic markers through a process called genome segmentation. This enables us to reconstruct the ancestral genome from hundreds of thousands of markers rather than the tens of thousands of annotated genes. We also introduce the concept of local genome rearrangement, through which we refine syntenic blocks before they are used in the reconstruction of contiguous ancestral regions. With the enhanced workflow at hand, we reconstruct the ancestral genome of eudicots, a major sub-clade of flowering plants, using whole genome sequences of five modern plants. CONCLUSIONS: Our reconstructed genome is highly detailed, yet its layout agrees well with that reported in Badouin et al. (2017). Using local genome rearrangement, not only the marker-based, but also the gene-based reconstruction of the eudicot ancestor exhibited increased genome content, evidencing the power of this novel concept.