RESUMO
To describe ventilation strategies used during extracorporeal membrane oxygenation (ECMO) for neonatal respiratory failure among level IV neonatal ICUs (NICUs). DESIGN: Cross-sectional electronic survey. SETTING: Email-based Research Electronic Data Capture survey. PATIENTS: Neonates undergoing ECMO for respiratory failure at level IV NICUs. INTERVENTIONS: A 40-question survey was sent to site sponsors of regional referral neonatal ECMO centers participating in the Children's Hospitals Neonatal Consortium. Reminder emails were sent at 2- and 4-week intervals. MEASUREMENTS AND MAIN RESULTS: Twenty ECMO centers responded to the survey. Most primarily use venoarterial ECMO (65%); this percentage is higher (90%) for congenital diaphragmatic hernia. Sixty-five percent reported following protocol-based guidelines, with neonatologists primarily responsible for ventilator management (80%). The primary mode of ventilation was pressure control (90%), with synchronized intermittent mechanical ventilation (SIMV) comprising 80%. Common settings included peak inspiratory pressure (PIP) of 16-20 cm H2O (55%), positive end-expiratory pressure (PEEP) of 9-10 cm H2O (40%), I-time 0.5 seconds (55%), rate of 10-15 (60%), and Fio2 22-30% (65%). A minority of sites use high-frequency ventilation (HFV) as the primary mode (5%). During ECMO, 55% of sites target some degree of lung aeration to avoid complete atelectasis. Fifty-five percent discontinue inhaled nitric oxide (iNO) during ECMO, while 60% use iNO when trialing off ECMO. Nonventilator practices to facilitate decannulation include bronchoscopy (50%), exogenous surfactant (25%), and noninhaled pulmonary vasodilators (50%). Common ventilator thresholds for decannulation include PEEP of 6-7 (45%), PIP of 21-25 (55%), and tidal volume 5-5.9 mL/kg (50%). CONCLUSIONS: The majority of level IV NICUs follow internal protocols for ventilator management during neonatal respiratory ECMO, and neonatologists primarily direct management in the NICU. While most centers use pressure-controlled SIMV, there is considerable variability in the range of settings used, with few centers using HFV primarily. Future studies should focus on identifying respiratory management practices that improve outcomes for neonatal ECMO patients.
RESUMO
OBJECTIVE: Describe practice variations in ventilator strategies used for lung rest during extracorporeal membrane oxygenation for respiratory failure in neonates, and assess the potential impact of various lung rest strategies on the duration of extracorporeal membrane oxygenation and the duration of mechanical ventilation after decannulation. DATA SOURCES: Retrospective cohort analysis from the Extracorporeal Life Support Organization registry database during the years 2008-2013. STUDY SELECTION: All extracorporeal membrane oxygenation runs for infants less than or equal to 30 days of life for pulmonary reasons were included. DATA EXTRACTION: Ventilator type and ventilator settings used for lung rest at 24 hours after extracorporeal membrane oxygenation initiation were obtained. DATA SYNTHESIS: A total of 3,040 cases met inclusion criteria. Conventional mechanical ventilation was used for lung rest in 88% of cases and high frequency ventilation was used in 12%. In the conventional mechanical ventilation group, 32% used positive end-expiratory pressure strategy of 4-6 cm H2O (low), 22% used 7-9 cm H2O (mid), and 43% used 10-12 cm H2O (high). High frequency ventilation was associated with an increased mean (SEM) hours of extracorporeal membrane oxygenation (150.2 [0.05] vs 125 [0.02]; p < 0.001) and an increased mean (SEM) hours of mechanical ventilation after decannulation (135 [0.09] vs 100.2 [0.03]; p = 0.002), compared with conventional mechanical ventilation among survivors. Within the conventional mechanical ventilation group, use of higher positive end-expiratory pressure was associated with a decreased mean (SEM) hours of extracorporeal membrane oxygenation (high vs low: 136 [1.06] vs 156 [1.06], p = 0.001; mid vs low: 141 [1.06] vs 156 [1.06]; p = 0.04) but increased duration of mechanical ventilation after decannulation in the high positive end-expiratory pressure group compared with low positive end-expiratory pressure (p = 0.04) among survivors. CONCLUSIONS: Wide practice variation exists with regard to ventilator settings used for lung rest during neonatal respiratory extracorporeal membrane oxygenation. Use of high frequency ventilation when compared with conventional mechanical ventilation and use of low positive end-expiratory pressure strategy when compared with mid positive end-expiratory pressure and high positive end-expiratory pressure strategy is associated with longer duration of extracorporeal membrane oxygenation. Further research to provide evidence to drive optimization of pulmonary management during neonatal respiratory extracorporeal membrane oxygenation is warranted.