Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 3(8): 4941-4948, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021738

RESUMO

The first electrochemical immunosensor for the determination of the 20S proteasome (P20S) was developed, entailing the immobilization of an antibody on an aminophenylboronic/poly-indole-6-carboxylic acid-modified electrode. The proposed electrochemical bioplatform is a simple and feasible analytical tool applicable for the determination of P20S in human plasma, considering its high clinical and biological relevance. Cyclic voltammetry, electrochemical impedance spectroscopy, and square wave voltammetry (SWV) were used to determine the optimal step-by-step process to obtain the electrochemical immunosensor. The interaction of P20S with the recognition layer of the immobilized antibody on the nanostructured surface took place by incubating the electrode in a P20S solution at 20 °C for 2 h. Using SWV as an electro-analytical technique, this immunosensor can quantify P20S. The current was linear with the P20S concentration within two dynamic concentration ranges from 20.0 to 80.0 and 80.0 to 200.0 ng·mL-1 (r2 = 0.992 and 0.98, respectively) with a limit of detection and quantification of 6 and 18 ng·mL-1, respectively. Moreover, the immunosensor showed considerable repeatability and reproducibility, when the determination was done in human serum, which confirms that it is a promising alternative for direct detection of P20S in biological fluids with minimal interference.

2.
Bioelectrochemistry ; 99: 40-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24984198

RESUMO

The electrochemical behaviour of the cytosine nucleoside analogue and anti-cancer drug gemcitabine (GEM) was investigated at glassy carbon electrode, using cyclic, differential pulse and square wave voltammetry, in different pH supporting electrolytes, and no electrochemical redox process was observed. The evaluation of the interaction between GEM and DNA in incubated solutions and using the DNA-electrochemical biosensor was studied. The DNA structural modifications and damage were electrochemically detected following the changes in the oxidation peaks of guanosine and adenosine residues and the occurrence of the free guanine residues electrochemical signal. The DNA-GEM interaction mechanism occurred in two sequential steps. The initial process was independent of the DNA sequence and led to the condensation/aggregation of the DNA strands, producing rigid structures, which favoured a second step, in which the guanine hydrogen atoms, participating in the C-G base pair, interacted with the GEM ribose moiety fluorine atoms.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , DNA/química , Desoxicitidina/análogos & derivados , Conformação de Ácido Nucleico/efeitos dos fármacos , Técnicas Biossensoriais/métodos , Desoxicitidina/farmacologia , Técnicas Eletroquímicas/métodos , Humanos , Neoplasias/tratamento farmacológico , Oxirredução , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA