Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 178, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333167

RESUMO

The Neuronal alpha-Synuclein Disease (NSD) biological definition and Integrated Staging System (NSD-ISS) provide a research framework to identify individuals with Lewy body pathology and stage them based on underlying biology and increasing degree of functional impairment. Utilizing data from the PPMI, PASADENA, and SPARK studies, we developed and applied biologic and clinical data-informed definitions for the NSD-ISS across the disease continuum. Individuals enrolled as Parkinson's disease, Prodromal, or Healthy Controls were defined and staged based on biological, clinical, and functional anchors at baseline. Across the three studies 1741 participants had SAA data and of these 1030 (59%) were S+ consistent with NSD. Among sporadic PD, 683/736 (93%) were NSD, and the distribution for Stages 2B, 3, and 4 was 25%, 63%, and 9%, respectively. Median (95% CI) time to developing a clinically meaningful outcome was 8.3 (6.2, 10.1), 5.9 (4.1, 6.0), and 2.4 (1.0, 4.0) years for baseline stage 2B, 3, and 4, respectively. We propose pilot biologic and clinical anchors for NSD-ISS. Our results highlight the baseline heterogeneity of individuals currently defined as early PD. Baseline stage predicts time to progression to clinically meaningful milestones. Further research on validation of the anchors in longitudinal cohorts is necessary.

2.
medRxiv ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39314957

RESUMO

The Neuronal alpha-Synuclein Disease (NSD) biological definition and Integrated Staging System (NSD-ISS) provide a research framework to identify individuals with Lewy body pathology and stage them based on underlying biology and increasing degree of functional impairment. Utilizing data from the PPMI, PASADENA and SPARK studies, we developed and applied biologic and clinical data-informed definitions for the NSD-ISS across the disease continuum. Individuals enrolled as Parkinson's disease, Prodromal, or Healthy Controls were defined and staged based on biological, clinical, and functional anchors at baseline. Across the three studies 1,741 participants had SAA data and of these 1,030 (59%) were S+ consistent with NSD. Among sporadic PD, 683/736 (93%) were NSD, and the distribution for Stages 2B, 3, and 4 was 25%, 63%, and 9%, respectively. Median (95% CI) time to developing a clinically meaningful outcome was 8.3 (6.2, 10.1), 5.9 (4.1, 6.0), and 2.4 (1.0, 4.0) years for baseline stage 2B, 3, and 4, respectively. We propose pilot biologic and clinical anchors for NSD-ISS. Our results highlight the baseline heterogeneity of individuals currently defined as early PD. Baseline stage predicts time to progression to clinically meaningful milestones. Further research on validation of the anchors in longitudinal cohorts is necessary.

3.
Lancet Neurol ; 23(2): 178-190, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38267190

RESUMO

Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença por Corpos de Lewy/diagnóstico , Sinucleinopatias/diagnóstico , Corpos de Lewy , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA