RESUMO
SCOPE: We tested herein the hypothesis that peroxisome proliferator activated receptor γ (PPARγ) is a major mediator of omega-3 (n-3) protective actions against high-fat diet (HFD) induced obesity, glucose intolerance, and adipose tissue inflammation. METHODS AND RESULTS: C57BL6 wild-type and fat-1 transgenic (fat-1) mice were fed a low-fat diet (LFD) or HFD, treated or not with PPARγ antagonist, and evaluated for energy balance, adiposity, glucose tolerance, and adipose tissue inflammation. Fat-1 mice were protected from obesity, fasting hyperglycemia, glucose intolerance, and adipose tissue inflammation. PPARγ inhibition completely abolished fat-1 protection against HFD-induced glucose intolerance, but not obesity or adipose tissue inflammation. To investigate the role of myeloid cell as mediator of n-3 beneficial metabolic actions, mice with deletion (LyzM-PPARγ(KO)) or nondeletion (LyzM-PPARγ(WT)) of PPARγ in myeloid cells were fed either LFD or HFD (lard) or an HFD rich in n-3 (fish oil). Our findings indicate that myeloid cell associated PPARγ is not involved in the attenuation of HFD-induced glucose intolerance and adipose tissue inflammation induced by n-3. CONCLUSION: High endogenous n-3 fatty acid levels protect from HFD obesity, glucose intolerance, and adipose tissue inflammation. Among these, only protection against glucose intolerance is mediated by non-myeloid cell PPARγ.
Assuntos
Tecido Adiposo/patologia , Glicemia/análise , Ácidos Graxos Ômega-3/administração & dosagem , Obesidade/prevenção & controle , PPAR gama/fisiologia , Animais , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Here, we investigated whether pharmacological PPARγ activation modulates key early events in brown adipose tissue (BAT) recruitment induced by acute cold exposure with the aim of unraveling the interrelationships between sympathetic and PPARγ signaling. Sprague-Dawley rats treated or not with the PPARγ ligand rosiglitazone (15 mg·kg(-1)·day(-1), 7 days) were kept at 23°C or exposed to cold (5°C) for 24 h and evaluated for BAT gene expression, sympathetic activity, thyroid status, and adrenergic signaling. Rosiglitazone did not affect the reduction in body weight gain and the increase in feed efficiency, Vo(2), and BAT sympathetic activity induced by 24-h cold exposure. Rosiglitazone strongly attenuated the increase in serum total and free T4 and T3 levels and BAT iodothyronine deiodinase type 2 (D2) and PGC-1α mRNA levels and potentiated the reduction in BAT thyroid hormone receptor (THR) ß mRNA levels induced by cold. Administration of T3 to rosiglitazone-treated rats exacerbated the cold-induced increase in energy expenditure but did not restore a proper activation of D2 and PGC-1α, nor further increased uncoupling protein 1 expression. Regarding adrenergic signaling, rosiglitazone did not affect the changes in BAT cAMP content and PKA activity induced by cold. Rosiglitazone alone or in combination with cold increased CREB binding to DNA, but it markedly reduced the expression of one of its major coactivators, CREB binding protein. In conclusion, pharmacological PPARγ activation impairs short-term cold elicitation of BAT adrenergic and thyroid signaling, which may result in abnormal tissue recruitment and thermogenic activity.
Assuntos
Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Iodeto Peroxidase/metabolismo , PPAR gama/metabolismo , Proteínas de Ligação a RNA/metabolismo , Glândula Tireoide/fisiologia , Fatores de Transcrição/metabolismo , Regulação para Cima/fisiologia , Animais , Masculino , Modelos Animais , PPAR gama/agonistas , PPAR gama/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tiazolidinedionas/farmacologia , Tiroxina/sangue , Fatores de Tempo , Tri-Iodotironina/sangue , Iodotironina Desiodinase Tipo IIRESUMO
Brown adipose tissue (BAT) non-shivering thermogenesis impacts energy homeostasis in rodents and humans. Mitochondrial uncoupling protein 1 in brown fat cells produces heat by dissipating the energy generated by fatty acid and glucose oxidation. In addition to thermogenesis and despite its small relative size, sympathetically activated BAT constitutes an important glucose, fatty acid, and triacylglycerol-clearing organ, and such function could potentially be used to alleviate dyslipidemias, hyperglycemia, and insulin resistance. To date, chronic sympathetic innervation and peroxisome proliferator-activated receptor (PPAR) γ activation are the only recognized inducers of BAT recruitment. Here, we review the major differences between these two BAT inducers in the regulation of lipolysis, fatty acid oxidation, lipid uptake and triacylglycerol synthesis, glucose uptake, and de novo lipogenesis. Whereas BAT recruitment through sympathetic drive translates into functional thermogenic activity, PPARγ-mediated recruitment is associated with a reduction in sympathetic activity leading to increased lipid storage in brown adipocytes. The promising therapeutic role of BAT in the treatment of hypertriglyceridemic and hyperglycemic conditions is also discussed.