Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 110(1): 67-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121326

RESUMO

Glass and bioactive glass-ceramic can be used in several applications. In bone growth where good bone/biomaterial adhesion was required, bioactive coatings for implants can improve bone formation. The glass and glass-ceramics of the LZS (Li2 O-ZrO2 -SiO2 ) system are very interesting because of their mechanical, electrical, and thermal properties. Very recently, their biological response in contact with human osteoblast has been evaluated. However, despite several initiatives, there are still no studies that systematically assess this system's bioactivity, dissolution, and cytotoxicity in vitro. This work aims to investigate the dissolution, bioactivity behavior, and cytotoxicity of LZS glass-ceramic. LZS glass-ceramics were produced from SiO2 , Li2 CO3, and ZrSiO4 by melting followed by quenching. The obtained glass frits were milled and uniaxially pressed and heat-treated at 800 and 900°C and submitted to physical-chemical, structural and mechanical characterization. Their dissolution behavior was studied in Tris-HCl, while bioactivity was performed in simulated solution body fluid (SBF). The cytotoxicity test was performed using glass-ceramic in direct contact with mesenchymal stem/stromal cells (SC) isolated from human exfoliated deciduous teeth. Structural and microstructural analyzes confirmed bioactivity. The results show that it was possible to produce bioactive glass-ceramic from LZS, proven by the formation of new calcium phosphate structures such as hydroxyapatite on the surface of the samples after exposure to SBF. The SC viability test performed indicated that the materials were not cytotoxic at 0.25, 0.5, and 1.0 mg/ml. The glass-ceramic system under study is very promising for a medicinal application that requires bioactivity and/or biocompatibility for bone regeneration.


Assuntos
Cerâmica , Dióxido de Silício , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Vidro/química , Humanos , Dióxido de Silício/química , Solubilidade
2.
J Mech Behav Biomed Mater ; 77: 494-500, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032316

RESUMO

A trachea is a tubular structure composed of smooth muscle that is reinforced with cartilage rings. Some diseases can cause sagging in smooth muscle and cartilaginous tissue. The end result is reduction (narrowing) of the trachea diameter. A solution to this problem is the use of tracheal stents, which are small tubular devices made of silicone. One is inserted into the trachea to prevent or correct its constriction. The purpose of tracheal stent use is to maintain cartilage support that would otherwise be lost in the airway. Current tracheal stent models present limitations in terms of shape and characteristics of the silicone used in their production. One of the most important is the large thickness of the wall, which makes its placement difficult; this mainly applies to pediatric patients. The wall thickness of the stent is closely related to the mechanical properties of the material. This study aims to test the reinforcement of silicone with three kinds of fibers, and then stents that were produced using fiber with the best compressive strength characteristics. Silicone samples were reinforced with polypropylene (PP), polyamide (PA), and carbon fiber (CF) at concentrations of 2% and 4% (vol%), which then underwent tensile strength and Shore A hardness testing. Samples with fiber showed good characteristics; surface analyses were carried out and they were used to produce stents with an internal diameter of 11 or 13mm and a length of 50mm. Stents underwent compression tests for qualitative evaluation. Samples with 2% and 4% CF blends showed the best mechanical performance, and they were used to produce stents. These samples presented similar compressive strengths at low deformation, but stents with a 4% CF blend exhibited improved compressive strength at deformations greater than 30-50% of their diameter (P ≤ 0.05). The addition of 2% and 4% CF blends conferred greater mechanical strength and resistance to the silicone matrix. This is particularly true at low deformation, which is the condition where the stent is used when implanted. In the finite element compression strength tests, the stent composite showed greater compression strength with the addition of fiber, and the results were in accordance with mechanical compression tests performed on the stents. In vivo tests showed that, after 30 days of post-implantation in sheep trachea, an inflammatory process occurred in the region of the trachea in contact with the stent composite and with the stent without fiber (WF). This response is a common process during the first few days of implantation.


Assuntos
Materiais Biocompatíveis/química , Brônquios/patologia , Silicones/química , Stents , Traqueia/patologia , Animais , Carbono/química , Força Compressiva , Análise de Elementos Finitos , Dureza , Teste de Materiais , Movimento (Física) , Nylons/química , Polipropilenos/química , Ovinos , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA