Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30742861

RESUMO

Traumatic brain injury (TBI) is a devastating disease frequently followed by behavioral disabilities including post-traumatic epilepsy (PTE). Although reasonable progress in understanding its pathophysiology has been made, treatment of PTE is still limited. Several studies have shown the neuroprotective effect of creatine in different models of brain pathology, but its effects on PTE is not elucidated. Thus, we decided to investigate the impact of delayed and chronic creatine supplementation on susceptibility to epileptic seizures evoked by pentylenetetrazol (PTZ) after TBI. Our experimental data revealed that 4 weeks of creatine supplementation (300 mg/kg, p.o.) initiated 1 week after fluid percussion injury (FPI) notably increased the latency to first myoclonic and tonic-clonic seizures, decreased the time spent in tonic-clonic seizure, seizure intensity, epileptiform discharges and spindle oscillations induced by a sub-convulsant dose of PTZ (35 mg/kg, i.p.). Interestingly, this protective effect persists for 1 week even when creatine supplementation is discontinued. The anticonvulsant effect of creatine was associated with its ability to reduce cell loss including the number of parvalbumin positive (PARV+) cells in CA3 region of the hippocampus. Furthermore, creatine supplementation also protected against the reduction of GAD67 levels, GAD activity and specific [3H]flunitrazepam binding in the hippocampus. These findings showed that chronic creatine supplementation may play a neuroprotective role on brain excitability by controlling the GABAergic function after TBI, providing a possible new strategy for the treatment of PTE.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Creatina/farmacologia , Epilepsia Pós-Traumática/complicações , Epilepsia Pós-Traumática/prevenção & controle , Neurônios GABAérgicos/efeitos dos fármacos , Convulsões/complicações , Convulsões/prevenção & controle , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Ondas Encefálicas/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Creatina/uso terapêutico , Epilepsia Pós-Traumática/tratamento farmacológico , Flunitrazepam/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Fármacos Neuroprotetores/uso terapêutico , Pentilenotetrazol , Ensaio Radioligante , Ratos , Convulsões/induzido quimicamente , Fatores de Tempo , Trítio/metabolismo
2.
PLoS One ; 8(2): e55668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405192

RESUMO

BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.


Assuntos
Adaptação Fisiológica , Mitocôndrias Hepáticas/fisiologia , Estresse Oxidativo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/metabolismo , Natação/fisiologia , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Oxirredução , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA