Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 273: 144-151, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913169

RESUMO

Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3 interactions in the modulation of the reproductive network in teleost fish.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Ciclídeos/anatomia & histologia , Ciclídeos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Clima Tropical , Animais , Feminino , Masculino
2.
J Neuroendocrinol ; : e12608, 2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29754434

RESUMO

RFamide peptides are expressed in the early stages of development in most vertebrates. Gonadotropin-inhibitory hormone (GnIH) belongs to the RFamide family, and its role in reproduction has been widely studied in adult vertebrates, ranging from fish to mammals. As only three reports evaluated GnIH during development, the aim of this study was to characterise the ontogeny of GnIH in a fish model, Cichlasoma dimerus. We detected the presence of two GnIH-immunoreactive (GnIH-ir) cell clusters with spatial and temporal differences. One cluster was observed by 3 days post-hatching (dph) in the nucleus olfacto-retinalis (NOR) and the other in the nucleus posterioris periventricularis by 14 dph. The number of GnIH-ir neurons increased in both nuclei, whereas their size increased only in the NOR from hatchling to juvenile stages. These changes occurred from the moment larvae started feeding exogenously and during development and differentiation of gonadal primordia. We showed by double-label immunofluorescence that only GnIH-ir neurons in the NOR co-expressed GnRH3 associated peptide. In addition, GnIH-ir fibre density increased in all brain regions from 5 dph. GnIH-ir fibres were also detected in the retina, optic tract and optic tectum, suggesting that GnIH acts as a neuromodulator of photoreception and the integration of different sensory modalities. Also, there were GnIH-ir fibres in the pituitary from 14 dph, which were in close association with somatotropes. Moreover, GnIH-ir fibres were observed in the saccus vasculosus from 30 dph, suggesting a potential role of GnIH in the modulation of its function. Finally, we found that gnih was expressed from 1 dph, and that the pattern of variation of its transcript levels was in accordance with that of cell number. Present results are the starting point for the study of new GnIH roles during development. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA