Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 69(6): 874-880, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32459619

RESUMO

Introduction. Biological adhesives and effective topical therapeutic agents that improve wound healing are urgently required for the treatment of chronic ulcers. A biodegradable adhesive based on a carbohydrate polymer with zinc oxide (CPZO) was shown to possess anti-inflammatory activity and enhance wound healing, but its bactericidal activity was unknown.Aim. To investigate the bactericidal activity of CPZO against bacteria commonly present as infectious agents in chronic wounds.Methodology. We examined the bactericidal activity of CPZO against three biofilm-producing bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) through three strategies: bacterial suspension, biofilm disruption and in vitro wound biofilm model.Results. In suspension cultures, CPZO had direct, potent bactericidal action against S. aureus within 24 h, whereas E. coli took 7 days to be eliminated. By contrast, P. aeruginosa survived up to 14 days with CPZO. CPZO had biofilm disruption activity against clinical isolates of S. aureus in the anti-biofilm test. Finally, in the in vitro wound biofilm model, CPZO dramatically reduced the bacterial viability of S. aureus and P. aeruginosa.Conclusions. Together with its previously shown anti-inflammatory properties, the bactericidal activity of CPZO gives it the potential to be a first-line therapeutic option for chronic various ulcers and, possibly, other chronic ulcers, preventing or controlling microbial infections, and leading to the healing of such complicated chronic ulcers.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Carboidratos/farmacologia , Polímeros/farmacologia , Cicatrização/efeitos dos fármacos , Óxido de Zinco/farmacologia , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos
2.
Arch Med Res ; 42(6): 475-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21939702

RESUMO

BACKGROUND AND AIMS: Anastomotic leaks continue to be a devastating complication for patients and surgeons worldwide. The few surgical adhesives available to date have not achieved the desired clinical results. The purpose of this experimental study was to determine if Pebisut® applied to intestinal suture lines provides increased resistance and protection during the critical days of healing. METHODS: Intestinal lesions were caused in rats and dogs and a new biodegradable adhesive (Pebisut®) (patent granted in the European Union 07808494.4-1219, 01.12.2010, in Mexico P.C.T./MX/a/2009/001737, 16.02.2009, pending in the U.S.P.T.O. 60/762,136, 26.01.2006) was applied to compare the resistance of suture lines using bursting pressures and histologically. RESULTS: Under acute and chronic conditions, Pebisut® strengthened and made the suture lines more resistant, while histologically penetrating and sealing them. The adhesive disappears within 2-3 weeks and is well tolerated by the intestinal tissues. CONCLUSIONS: This biodegradable adhesive provides greater resistance, temporarily protects suture lines and may prevent anastomotic leaks.


Assuntos
Anastomose Cirúrgica , Intestinos/cirurgia , Adesivos Teciduais , Animais , Materiais Biocompatíveis , Cães , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA