Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 197: 65-73, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28219527

RESUMO

Synergism between beneficial rhizobacteria and fungal pathogens is poorly understood. Therefore, evaluation of co-inoculation of bacteria that promote plant growth by different mechanisms in pathogen challenged plants would contribute to increase the knowledge about how plants manage interactions with different microorganisms. The goals of this work were a) to elucidate, in greenhouse experiments, the effect of co-inoculation of peanut with Bradyrhizobium sp. SEMIA6144 and the biocontrol agent Bacillus sp. CHEP5 on growth and symbiotic performance of Sclerotium rolfsii challenged plants, and b) to evaluate field performance of these bacteria in co-inoculated peanut plants. The capacity of Bacillus sp. CHEP5 to induce systemic resistance against S. rolfsii was not affected by the inoculation of Bradyrhizobium sp. SEMIA6144. This microsymbiont, protected peanut plants from the S. rolfsii detrimental effect, reducing the stem wilt incidence. However, disease incidence in plants inoculated with the isogenic mutant Bradyrhizobium sp. SEMIA6144 V2 (unable to produce Nod factors) was as high as in pathogen challenged plants. Therefore, Bradyrhizobium sp. SEMIA6144 Nod factors play a role in the systemic resistance against S. rolfsii. Bacillus sp. CHEP5 enhanced Bradyrhizobium sp. SEMIA6144 root surface colonization and improved its symbiotic behavior, even in S. rolfsii challenged plants. Results of field trials confirmed the Bacillus sp. CHEP5 ability to protect against fungal pathogens and to improve the yield of extra-large peanut seeds from 2.15% (in Río Cuarto) to 16.69% (in Las Vertientes), indicating that co-inoculation of beneficial rhizobacteria could be a useful strategy for the peanut production under sustainable agriculture system.


Assuntos
Arachis/microbiologia , Bacillus/fisiologia , Bradyrhizobium/fisiologia , Fungos/patogenicidade , Doenças das Plantas/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/imunologia , Arachis/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Agentes de Controle Biológico , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Resistência à Doença , Fungos/fisiologia , Interações Hospedeiro-Parasita , Imunidade Inata , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Simbiose
2.
Funct Plant Biol ; 43(4): 337-345, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480465

RESUMO

Drought stress is one of the most important environmental factors that adversely affect the productivity and quality of crops. Most studies focus on elucidating plant responses to this stress but the reversibility of these effects is less known. The aim of this work was to evaluate whether drought-stressed peanut (Arachis hypogaea L.) plants were capable of recovering their metabolism upon rehydration, with a focus on their antioxidant system. Peanut plants in the flowering phase (30 days after sowing) were exposed to drought stress by withholding irrigation during 14 days and subsequent rehydration during 3 days. Under these conditions, physiological status indicators, reactive oxygen species production and antioxidant system activity were evaluated. Under drought stress, the stomatal conductance, photosynthetic quantum yield and 13C:12C ratio of the peanut plants were negatively affected, and also they accumulated reactive oxygen species. The antioxidant system of peanut plants showed increases in superoxide dismutase-, ascorbate peroxidase- and glutathione reductase-specific activities, as well as the total ascorbate content. All of these responses were reversed upon rehydration at 3 days. The efficient and dynamic regulation of variables related to photosynthesis and the antioxidant system during a drought and rehydration cycle in peanut plants was demonstrated. It is suggested that the activation of the antioxidant system could mediate the signalling of drought stress responses that enable the plant to survive and recover completely within 3 days of rehydration.

3.
Metallomics ; 4(10): 1119-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22986748

RESUMO

Cadmium (Cd) is a well known heavy metal considered as one of the most toxic metals on Earth, affecting all viable cells that are exposed even at low concentration. It is introduced to agricultural soils mainly by phosphate fertilizers and causes many toxic symptoms in cells. Phytochelatins (PCs) are non-protein thiols which are involved in oxidative stress protection and are strongly induced by Cd. In this work, we analyzed metal toxicity as well as PCs implication on protection of peanut plants exposed to Cd. Results showed that Cd exposure induced a reduction of peanut growth and produced changes in the histological structure with a deposit of unknown material on the epidermal and endodermal cells. When plants were exposed to 10 µM Cd, no modification of chlorophyll, lipid peroxides, carbonyl groups, or hydrogen peroxide (H2O2) content was observed. At this concentration, peanut leaves and roots glutathione (GSH) content decreased. However, peanut roots were able to synthesize different types of PCs (PC2, PC3, PC4). In conclusion, PC synthesis could prevent metal disturbance on cellular redox balance, avoiding oxidative damage to macromolecules.


Assuntos
Arachis/efeitos dos fármacos , Arachis/fisiologia , Cádmio/toxicidade , Fitoquelatinas/fisiologia , Arachis/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo
4.
Arch Microbiol ; 194(10): 837-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22547296

RESUMO

Little is known regarding production and function of endogenous jasmonates (JAs) in root nodules of soybean plants inoculated with Bradyrhizobium japonicum. We investigated (1) production of jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) in roots of control and inoculated plants and in isolated nodules; (2) correlations between JAs levels, nodule number, and plant growth during the symbiotic process; and (3) effects of exogenous JA and OPDA on nodule cell number and size. In roots of control plants, JA and OPDA levels reached a maximum at day 18 after inoculation; OPDA level was 1.24 times that of JA. In roots of inoculated plants, OPDA peaked at day 15, whereas JA level did not change appreciably. Shoot dry matter of inoculated plants was higher than that of control at day 21. Chlorophyll a decreased more abruptly in control plants than in inoculated plants, whereas b decreased gradually in both cases. Exogenous JA or OPDA changed number and size of nodule central cells and peripheral cells. Findings from this and previous studies suggest that increased levels of JA and OPDA in control plants are related to senescence induced by nutritional stress. OPDA accumulation in nodulated roots suggests its involvement in "autoregulation of nodulation."


Assuntos
Bradyrhizobium/fisiologia , Ciclopentanos/metabolismo , Glycine max/microbiologia , Oxilipinas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Adulto , Bradyrhizobium/metabolismo , Clorofila/metabolismo , Clorofila A , Ciclopentanos/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Humanos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Simbiose/efeitos dos fármacos , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA