RESUMO
BACKGROUND: The trans-Atlantic slave trade dramatically changed the demographic makeup of the New World, with varying regions of the African coast exploited differently over roughly a 400 year period. When compared to the discrete mitochondrial haplotype distribution of historically appropriate source populations, the unique distribution within a specific source population can prove insightful in estimating the contribution of each population. Here, we analyzed the first hypervariable region of mitochondrial DNA in a sample from the Caribbean island of Jamaica and compared it to aggregated populations in Africa divided according to historiographically defined segments of the continent's coastline. The results from these admixture procedures were then compared to the wealth of historic knowledge surrounding the disembarkation of Africans on the island. RESULTS: In line with previous findings, the matriline of Jamaica is almost entirely of West African descent. Results from the admixture analyses suggest modern Jamaicans share a closer affinity with groups from the Gold Coast and Bight of Benin despite high mortality, low fecundity, and waning regional importation. The slaves from the Bight of Biafra and West-central Africa were imported in great numbers; however, the results suggest a deficit in expected maternal contribution from those regions. CONCLUSIONS: When considering the demographic pressures imposed by chattel slavery on Jamaica during the slave era, the results seem incongruous. Ethnolinguistic and ethnographic evidence, however, may explain the apparent non-random levels of genetic perseverance. The application of genetics may prove useful in answering difficult demographic questions left by historically voiceless groups.
Assuntos
População Negra/genética , Genética Populacional , DNA Mitocondrial/genética , Emigração e Imigração , Humanos , Jamaica/etnologia , Problemas SociaisRESUMO
UNLABELLED: The angiotensin-converting enzyme (ACE) and the alpha-actinin-3 (ACTN3) genes are two of the most studied "performance genes" and both have been associated with sprint/power phenotypes and elite performance. PURPOSE: To investigate the association between the ACE and the ACTN3 genotypes and sprint athlete status in elite Jamaican and US African American sprinters. METHODS: The ACTN3 R577X and the ACE I/D and A22982G (rs4363) genotype distributions of elite Jamaican (J-A; N = 116) and US sprinters (US-A; N = 114) were compared with controls from the Jamaican (J-C; N = 311) and US African American (US-C; N = 191) populations. Frequency differences between groups were assessed by exact test. RESULTS: For ACTN3, the XX genotype was found to be at very low frequency in both athlete and control cohorts (J-C = 2%, J-A = 3%, US-C = 4%, US-A = 2%). Athletes did not differ from controls in ACTN3 genotype distribution (J, P = 0.87; US, P = 0.58). Similarly, neither US nor Jamaican athletes differed from controls in genotype at ACE I/D (J, P = 0.44; US, P = 0.37). Jamaican athletes did not differ from controls for A22982G genotype (P = 0.28), although US sprinters did (P = 0.029), displaying an excess of heterozygotes relative to controls but no excess of GG homozygotes (US-C = 22%, US-A = 18%). CONCLUSIONS: Given that ACTN3 XX genotype is negatively associated with elite sprint athlete status, the underlying low frequency in these populations eliminates the possibility of replicating this association in Jamaican and US African American sprinters. The finding of no excess in ACE DD or GG genotypes in elite sprint athletes relative to controls suggests that ACE genotype is not a determinant of elite sprint athlete status.