RESUMO
Aedes mosquito-borne viruses (ABVs) place a substantial strain on public health resources in the Americas. Vector control of Aedes mosquitoes is an important public health strategy to decrease or prevent spread of ABVs. The ongoing Targeted Indoor Residual Spraying (TIRS) trial is an NIH-sponsored clinical trial to study the efficacy of a novel, proactive vector control technique to prevent dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) infections in the endemic city of Merida, Yucatan, Mexico. The primary outcome of the trial is laboratory-confirmed ABV infections in neighborhood clusters. Despite the difficulties caused by the COVID-19 pandemic, by early 2021 the TIRS trial completed enrollment of 4,792 children aged 2-15 years in 50 neighborhood clusters which were allocated to control or intervention arms via a covariate-constrained randomization algorithm. Here, we describe the makeup and ABV seroprevalence of participants and mosquito population characteristics in both arms before TIRS administration. Baseline surveys showed similar distribution of age, sex, and socio-economic factors between the arms. Serum samples from 1,399 children were tested by commercially available ELISAs for presence of anti-ABV antibodies. We found that 45.1% of children were seropositive for one or more flaviviruses and 24.0% were seropositive for CHIKV. Of the flavivirus-positive participants, most were positive for ZIKV-neutralizing antibodies by focus reduction neutralization testing which indicated a higher proportion of participants with previous ZIKV than DENV infections within the cohort. Both study arms had statistically similar seroprevalence for all viruses tested, similar socio-demographic compositions, similar levels of Ae. aegypti infestation, and similar observed mosquito susceptibility to insecticides. These findings describe a population with a high rate of previous exposure to ZIKV and lower titers of neutralizing antibodies against DENV serotypes, suggesting susceptibility to future outbreaks of flaviviruses is possible, but proactive vector control may mitigate these risks.
Assuntos
Aedes , Dengue , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Humanos , Criança , Aedes/virologia , Animais , México/epidemiologia , Adolescente , Pré-Escolar , Feminino , Controle de Mosquitos/métodos , Masculino , Mosquitos Vetores/virologia , Dengue/epidemiologia , Dengue/prevenção & controle , Dengue/virologia , Estudos Soroepidemiológicos , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Zika virus/isolamento & purificação , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Vírus da Dengue/imunologia , Vírus da Dengue/isolamento & purificação , Vírus Chikungunya/imunologiaRESUMO
Background: The emergence of COVID-19 variants with immune scape and the waning of primary vaccine schemes effectiveness have prompted many countries to indicate first and second booster COVID-19 vaccine doses to prevent severe COVID-19. However, current available evidence on second booster dose effectiveness are mostly limited to high-income countries, older adults, and mRNA-based vaccination schemes scenarios. We aimed to investigate the relative vaccine effectiveness (rVE) of the fourth dose compared to three doses for severe COVID-19 outcomes in Brazil; and compare the rVE of a fourth dose with an mRNA vaccine compared to adenovirus-based product in the same settings. Methods: We performed a target emulated trial using a population-based cohort of individuals aged 40 years or older who have received a homologous primary scheme of CoronaVac, ChAdOx1, or BNT162b2, and any third dose product and were eligible for the fourth dose in Brazil. The primary outcome was COVID-19 associated hospitalization or death. We built Cohort A matching individuals vaccinated with a fourth dose to individuals who received three doses to estimate the rVE of the fourth dose. We built Cohort B, a subset of Cohort A, matching mRNA-based (mRNA) to adenovirus-based fourth dose vaccinated individuals to compare their relative hazards for severe COVID-19. Findings: 46,693,484 individuals were included in Cohort A and 6,763,016 in Cohort B. 45% of them were aged between 40 and 60 years old, and 48% between 60 and 79 years old. In Cohort A, the most common previous series was a ChAdOx1 two-dose followed by BNT162b2 (44%), and a CoronaVac two-dose followed by a BNT162b2 (36%). Among those fourth dose vaccinated, 36.9% received ChAdOx1, 32.7% Ad26.COV2.S, 25.8% BNT162b2, and 4.7% CoronaVac. In Cohort B, among those who received an adenovirus fourth dose, 53.7% received ChAdOx1 and 46.3% received Ad26.COV2.S. The estimated rVE for the primary outcome of four doses compared to three doses was 44.1% (95% CI 42.3-46.0), with some waning during follow-up (rVE 7-60 days 46.8% [95% CI 44.4-49.1], rVE after 120 days 33.8% [95% CI 18.0-46.6]). Among fourth dose vaccinated individuals, mRNA-based vaccinated individuals had lower hazards for hospitalization or death compared to adenovirus-vaccinated individuals (HR 0.81, 95% CI 0.75-0.87). After 120 days, no difference in hazards between groups was observed (HR 1.35, 95% CI 0.93-1.97). Similar findings were observed for hospitalization and death separately, except no evidence for differences between fourth dose brands for death in Cohort B. Interpretation: In a heterogeneous scenario of primary and first booster vaccination combinations, a fourth dose provided meaningful and durable protection against severe COVID-19 outcomes. Compared to adenovirus-based booster, a fourth dose wild-type mRNA vaccine was associated with immediate lower hazards of hospitalization or death unsustained after 120 days. Funding: None.
RESUMO
The effectiveness of inactivated vaccines (VE) against symptomatic and severe COVID-19 caused by omicron is unknown. We conducted a nationwide, test-negative, case-control study to estimate VE for homologous and heterologous (BNT162b2) booster doses in adults who received two doses of CoronaVac in Brazil in the Omicron context. Analyzing 1,386,544 matched-pairs, VE against symptomatic disease was 8.6% (95% CI, 5.6-11.5) and 56.8% (95% CI, 56.3-57.3) in the period 8-59 days after receiving a homologous and heterologous booster, respectively. During the same interval, VE against severe Covid-19 was 73.6% (95% CI, 63.9-80.7) and 86.0% (95% CI, 84.5-87.4) after receiving a homologous and heterologous booster, respectively. Waning against severe Covid-19 after 120 days was only observed after a homologous booster. Heterologous booster might be preferable to individuals with completed primary series inactivated vaccine.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Vacina BNT162 , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Humanos , Vacinas de Produtos InativadosRESUMO
OBJECTIVE: To estimate the change in odds of covid-19 over time following primary series completion of the inactivated whole virus vaccine CoronaVac (Sinovac Biotech) in São Paulo State, Brazil. DESIGN: Test negative case-control study. SETTING: Community testing for covid-19 in São Paulo State, Brazil. PARTICIPANTS: Adults aged ≥18 years who were residents of São Paulo state, had received two doses of CoronaVac, did not have a laboratory confirmed SARS-CoV-2 infection before vaccination, and underwent reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 from 17 January to 14 December 2021. Cases were matched to test negative controls by age (in 5 year bands), municipality of residence, healthcare worker status, and epidemiological week of RT-PCR test. MAIN OUTCOME MEASURES: RT-PCR confirmed symptomatic covid-19 and associated hospital admissions and deaths. Conditional logistic regression was adjusted for sex, number of covid-19 associated comorbidities, race, and previous acute respiratory illness. RESULTS: From 202 741 eligible people, 52 170 cases with symptomatic covid-19 and 69 115 test negative controls with covid-19 symptoms were formed into 43 257 matched sets. Adjusted odds ratios of symptomatic covid-19 increased with time since completion of the vaccination series. The increase in odds was greater in younger people and among healthcare workers, although sensitivity analyses suggested that this was in part due to bias. In addition, the adjusted odds ratios of covid-19 related hospital admission or death significantly increased with time compared with the odds 14-41 days after series completion: from 1.25 (95% confidence interval 1.04 to 1.51) at 70-97 days up to 1.94 (1.41 to 2.67) from 182 days onwards. CONCLUSIONS: Significant increases in the risk of moderate and severe covid-19 outcomes occurred three months after primary vaccination with CoronaVac among people aged 65 and older. These findings provide supportive evidence for the implementation of vaccine boosters in these populations who received this inactivated vaccine. Studies of waning should include analyses designed to uncover common biases.
Assuntos
COVID-19 , Vacinas , Adolescente , Adulto , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Vacinas contra COVID-19 , Estudos de Casos e Controles , Humanos , SARS-CoV-2 , VacinaçãoRESUMO
BACKGROUND: COVID-19 vaccines have proven highly effective among individuals without a previous SARS-CoV-2 infection, but their effectiveness in preventing symptomatic infection and severe outcomes among individuals with previous infection is less clear. We aimed to estimate the effectiveness of four COVID-19 vaccines against symptomatic infection, hospitalisation, and death for individuals with laboratory-confirmed previous SARS-CoV-2 infection. METHODS: Using national COVID-19 notification, hospitalisation, and vaccination datasets from Brazil, we did a test-negative, case-control study to assess the effectiveness of four vaccines (CoronaVac [Sinovac], ChAdOx1 nCoV-19 [AstraZeneca], Ad26.COV2.S [Janssen], and BNT162b2 [Pfizer-BioNtech]) for individuals with laboratory-confirmed previous SARS-CoV-2 infection. We matched cases with RT-PCR positive, symptomatic COVID-19 with up to ten controls with negative RT-PCR tests who presented with symptomatic illnesses, restricting both groups to tests done at least 90 days after an initial infection. We used multivariable conditional logistic regression to compare the odds of test positivity and the odds of hospitalisation or death due to COVID-19, according to vaccination status and time since first or second dose of vaccines. FINDINGS: Between Feb 24, 2020, and Nov 11, 2021, we identified 213 457 individuals who had a subsequent, symptomatic illness with RT-PCR testing done at least 90 days after their initial SARS-CoV-2 infection and after the vaccination programme started. Among these, 30 910 (14·5%) had a positive RT-PCR test consistent with reinfection, and we matched 22 566 of these cases with 145 055 negative RT-PCR tests from 68 426 individuals as controls. Among individuals with previous SARS-CoV-2 infection, vaccine effectiveness against symptomatic infection 14 or more days from vaccine series completion was 39·4% (95% CI 36·1-42·6) for CoronaVac, 56·0% (51·4-60·2) for ChAdOx1 nCoV-19, 44·0% (31·5-54·2) for Ad26.COV2.S, and 64·8% (54·9-72·4) for BNT162b2. For the two-dose vaccine series (CoronaVac, ChAdOx1 nCoV-19, and BNT162b2), effectiveness against symptomatic infection was significantly greater after the second dose than after the first dose. Effectiveness against hospitalisation or death 14 or more days from vaccine series completion was 81·3% (75·3-85·8) for CoronaVac, 89·9% (83·5-93·8) for ChAdOx1 nCoV-19, 57·7% (-2·6 to 82·5) for Ad26.COV2.S, and 89·7% (54·3-97·7) for BNT162b2. INTERPRETATION: All four vaccines conferred additional protection against symptomatic infections and severe outcomes among individuals with previous SARS-CoV-2 infection. The provision of a full vaccine series to individuals after recovery from COVID-19 might reduce morbidity and mortality. FUNDING: Brazilian National Research Council, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Oswaldo Cruz Foundation, JBS, Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation, and Generalitat de Catalunya.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Vacina BNT162 , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2RESUMO
We investigated SARS-CoV-2 transmission dynamics in Italy, one of the countries hit hardest by the pandemic, using phylodynamic analysis of viral genetic and epidemiological data. We observed the co-circulation of multiple SARS-CoV-2 lineages over time, which were linked to multiple importations and characterized by large transmission clusters concomitant with a high number of infections. Subsequent implementation of a three-phase nationwide lockdown strategy greatly reduced infection numbers and hospitalizations. Yet we present evidence of sustained viral spread among sporadic clusters acting as "hidden reservoirs" during summer 2020. Mathematical modelling shows that increased mobility among residents eventually catalyzed the coalescence of such clusters, thus driving up the number of infections and initiating a new epidemic wave. Our results suggest that the efficacy of public health interventions is, ultimately, limited by the size and structure of epidemic reservoirs, which may warrant prioritization during vaccine deployment.
Assuntos
COVID-19/transmissão , Controle de Doenças Transmissíveis/métodos , Genoma Viral/genética , Mutação , Saúde Pública/métodos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Geografia , Humanos , Itália/epidemiologia , Pandemias , Filogenia , Saúde Pública/tendências , SARS-CoV-2/classificação , SARS-CoV-2/fisiologiaRESUMO
BACKGROUND: Current urban vector control strategies have failed to contain dengue epidemics and to prevent the global expansion of Aedes-borne viruses (ABVs: dengue, chikungunya, Zika). Part of the challenge in sustaining effective ABV control emerges from the paucity of evidence regarding the epidemiological impact of any Aedes control method. A strategy for which there is limited epidemiological evidence is targeted indoor residual spraying (TIRS). TIRS is a modification of classic malaria indoor residual spraying that accounts for Aedes aegypti resting behavior by applying residual insecticides on exposed lower sections of walls (< 1.5 m), under furniture, and on dark surfaces. METHODS/DESIGN: We are pursuing a two-arm, parallel, unblinded, cluster randomized controlled trial to quantify the overall efficacy of TIRS in reducing the burden of laboratory-confirmed ABV clinical disease (primary endpoint). The trial will be conducted in the city of Merida, Yucatan State, Mexico (population ~ 1million), where we will prospectively follow 4600 children aged 2-15 years at enrollment, distributed in 50 clusters of 5 × 5 city blocks each. Clusters will be randomly allocated (n = 25 per arm) using covariate-constrained randomization. A "fried egg" design will be followed, in which all blocks of the 5 × 5 cluster receive the intervention, but all sampling to evaluate the epidemiological and entomological endpoints will occur in the "yolk," the center 3 × 3 city blocks of each cluster. TIRS will be implemented as a preventive application (~ 1-2 months prior to the beginning of the ABV season). Active monitoring for symptomatic ABV illness will occur through weekly household visits and enhanced surveillance. Annual sero-surveys will be performed after each transmission season and entomological evaluations of Ae. aegypti indoor abundance and ABV infection rates monthly during the period of active surveillance. Epidemiological and entomological evaluation will continue for up to three transmission seasons. DISCUSSION: The findings from this study will provide robust epidemiological evidence of the efficacy of TIRS in reducing ABV illness and infection. If efficacious, TIRS could drive a paradigm shift in Aedes control by considering Ae. aegypti behavior to guide residual insecticide applications and changing deployment to preemptive control (rather than in response to symptomatic cases), two major enhancements to existing practice. TRIAL REGISTRATION: ClinicalTrials.gov NCT04343521 . Registered on 13 April 2020. The protocol also complies with the WHO International Clinical Trials Registry Platform (ICTRP) (Additional file 1). PRIMARY SPONSOR: National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID).
Assuntos
Aedes , Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Criança , Dengue/diagnóstico , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , México/epidemiologia , Controle de Mosquitos , Mosquitos Vetores , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
We use a data-driven global stochastic epidemic model to analyze the spread of the Zika virus (ZIKV) in the Americas. The model has high spatial and temporal resolution and integrates real-world demographic, human mobility, socioeconomic, temperature, and vector density data. We estimate that the first introduction of ZIKV to Brazil likely occurred between August 2013 and April 2014 (90% credible interval). We provide simulated epidemic profiles of incident ZIKV infections for several countries in the Americas through February 2017. The ZIKV epidemic is characterized by slow growth and high spatial and seasonal heterogeneity, attributable to the dynamics of the mosquito vector and to the characteristics and mobility of the human populations. We project the expected timing and number of pregnancies infected with ZIKV during the first trimester and provide estimates of microcephaly cases assuming different levels of risk as reported in empirical retrospective studies. Our approach represents a modeling effort aimed at understanding the potential magnitude and timing of the ZIKV epidemic and it can be potentially used as a template for the analysis of future mosquito-borne epidemics.
Assuntos
Infecção por Zika virus/epidemiologia , Aedes/virologia , América/epidemiologia , Animais , Brasil/epidemiologia , Epidemias , Feminino , Humanos , Recém-Nascido , Masculino , Microcefalia/complicações , Microcefalia/epidemiologia , Modelos Biológicos , Modelos Estatísticos , Mosquitos Vetores/virologia , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Processos Estocásticos , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissãoRESUMO
Transmission of Zika virus (ZIKV) was first detected in Colombia in September 2015. As of April 2016, Colombia had reported over 65,000 cases of Zika virus disease (ZVD). We analysed daily surveillance data of ZVD cases reported to the health authorities of San Andres and Girardot, Colombia, between September 2015 and January 2016. ZVD was laboratory-confirmed by reverse transcription-polymerase chain reaction (RT-PCR) in the serum of acute cases within five days of symptom onset. We use daily incidence data to estimate the basic reproductive number (R0) in each population. We identified 928 and 1,936 reported ZVD cases from San Andres and Girardot, respectively. The overall attack rate for reported ZVD was 12.13 cases per 1,000 residents of San Andres and 18.43 cases per 1,000 residents of Girardot. Attack rates were significantly higher in females in both municipalities (p < 0.001). Cases occurred in all age groups with highest rates in 20 to 49 year-olds. The estimated R0 for the Zika outbreak was 1.41 (95% confidence interval (CI): 1.15-1.74) in San Andres and 4.61 (95% CI: 4.11-5.16) in Girardot. Transmission of ZIKV is ongoing in the Americas. The estimated R0 from Colombia supports the observed rapid spread.