RESUMO
We surveyed macronutrients and dissolved iron (DFe) concentrations and speciation in a transect over the shelf of the South Brazil Bight (SBB) at Santa Marta Grande Cape (SE Brazil) during a coastal downwelling episode. Driven by dominant NE winds, coastal downwelling is a common feature during the austral summer and force after water convergence, with contribution of internal wave breaking at the shelf edge, upwelling of macronutrients into the nutrient-depleted waters of the southbound Brazil Current at ~100 km from the coastline. As a result, we found a plume of high turbidity that reached the euphotic layer, a deepening of the silicate, nitrate, and phosphate isolines over the shelf and a bulging of the nitrate and phosphate isolines over the shelf edge and the slope. Our first measurements of DFe concentration and speciation in the area revealed that against prior findings in other coastal areas, macronutrients, DFe, and iron ligand cycles were disentangled. Higher DFe concentrations were often found at the surface indicating aerial deposition. Secondary DFe maxima over the sediment-water interface and in the upwelled plume indicated DFe fluxes from the sediment and from resuspended instable colloids. Iron ligand concentrations were higher than DFe concentrations in most stations with a clear land-to-ocean gradient. Subtraction of HS iron ligands revealed that except in upwelled water, the bulk of surface ligands was the result of local biological processes. The analysis of the concentrations of Fe-HS complexes showed that the contribution of HS to DFe was dominant in upwelled waters, significant in waters close to the coast, but nearly negligible in the rest of the studied area. We hypothesize that the injection of iron-humic complexes into the euphotic layer during summer upwelling episodes is the key to understanding the persistent high chlorophyll meanders found over the shelf edge of the SBB coast.
RESUMO
An assessment of the major pigments and neurotoxins and a description of the phytoplankton community were carried out within the coastal region of Rio de Janeiro State (Brazil), during winter and the following spring of 2018. Overall, six stations were investigated for oceanographic conditions (with CTD casts). Filtered water samples were used to estimate the chlorophyll a (CHL-a), carotenoids (CAR), and phycobiliproteins (PHY) using UV-Vis spectrophotometry, as well as the quantification of saxitoxins (STX) and domoic acid (DA), through High Performance Liquid Chromatography (HPLC). Planktonic organisms were counted using sedimentation chambers of different volumes and an inverted microscope. A cluster analysis, SIMPER, and ANOSIM were applied to the phytoplankton data along with diversity indexes, and non-parametric statistics to phycotoxins and pigments. There was a significant difference between the winter and spring phytoplankton community, associated with the mixed layer depth (r2 = -0.626, p < 0.05) and temperature (r2 = 0.641, p < 0.05). Phytoplankton biomass and C:CHL-a indicated a higher production during the winter than in spring, with the potentially toxic genus Pseudo-nitzschia responsible for 12.79% of autotrophic abundance (SIMPER output). Pigments showed a slight increase in CAR during spring, while PHY remained at trace concentrations. Both the DA and STX were quantified in winter and spring, but with significant differences only for STX between the sampling periods. Among the 71 taxa, 11 were identified as potentially toxic with an emphasis on STX-producing dinoflagellates and cyanobacteria, such as Alexandrium sp., Gymnodinium spp. along with Trichodesmium spp. Season-related environmental variability may be the major driving force modulating the mixed assemblage of species that support different levels of phycotoxins.
Assuntos
Monitoramento Ambiental , Toxinas Marinhas/toxicidade , Fitoplâncton , Biomassa , Brasil , Clorofila A , Cianobactérias , Diatomáceas , Dinoflagellida , Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Neurotoxinas , Estações do Ano , Água do Mar , TrichodesmiumRESUMO
Domoic acid (DA) or Amnesic Shellfish Poisoning (ASP) produced by the genus Pseudo-nitzschia diatom was investigated in two seasonal periods in fishing areas of Katsuwonus pelamis in the South Atlantic Ocean. Higher DA concentrations were found in spring compared to winter. Pseudo-nitzschia spp. more quantified in winter than in spring, while P. pungens, a species among the most reported for an AD toxic potential, was only found in spring.