Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Nat Commun ; 15(1): 6510, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095347

RESUMO

Shotgun proteomics analysis presents multifaceted challenges, demanding diverse tool integration for insights. Addressing this complexity, OmicScope emerges as an innovative solution for quantitative proteomics data analysis. Engineered to handle various data formats, it performs data pre-processing - including joining replicates, normalization, data imputation - and conducts differential proteomics analysis for both static and longitudinal experimental designs. Empowered by Enrichr with over 224 databases, OmicScope performs Over Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA). Additionally, its Nebula module facilitates meta-analysis from independent datasets, providing a systems biology approach for enriched insights. Complete with a data visualization toolkit and accessible as Python package and a web application, OmicScope democratizes proteomics analysis, offering an efficient and high-quality pipeline for researchers.


Assuntos
Proteômica , Software , Proteômica/métodos , Biologia de Sistemas/métodos , Humanos , Bases de Dados de Proteínas , Biologia Computacional/métodos
2.
Childs Nerv Syst ; 40(10): 3099-3105, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39207527

RESUMO

Pediatric brain tumors, particularly those affecting the brainstem, present a significant challenge due to their intricate anatomical location and diverse classification. This review explores the classification, anatomical considerations, and surgical approaches for pediatric brainstem tumors, focusing on recent updates from the World Health Organization (WHO) classification. Brainstem tumors encompass a spectrum from diffuse gliomas to focal intrinsic and exophytic types, each presenting unique clinical and surgical challenges. Surgical strategies have evolved with advancements in neuroimaging and surgical techniques, emphasizing approaches such as neuroendoscopy and tailored incisions to minimize damage to critical structures. Despite the complexities involved, recent developments offer promising outcomes in tumor resection and patient management, highlighting ongoing advancements in neurosurgical care for pediatric brain tumors.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Neuroendoscopia , Humanos , Glioma/cirurgia , Glioma/patologia , Glioma/diagnóstico por imagem , Neoplasias do Tronco Encefálico/cirurgia , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Criança , Neuroendoscopia/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39028452

RESUMO

COVID-19, a complex multisystem disorder affecting the central nervous system, can also have psychiatric sequelae. In addition, clinical evidence indicates that a diagnosis of a schizophrenia spectrum disorder is a risk factor for mortality in patients with COVID-19. In this study, we aimed to explore brain-specific molecular aspects of COVID-19 by using a proteomic approach. We analyzed the brain proteome of fatal COVID-19 cases and compared it with differentially regulated proteins found in postmortem schizophrenia brains. The COVID-19 proteomic dataset revealed a strong enrichment of proteins expressed by glial and neuronal cells and processes related to diseases with a psychiatric and neurodegenerative component. Specifically, the COVID-19 brain proteome enriches processes that are hallmark features of schizophrenia. Furthermore, we identified shared and distinct molecular pathways affected in both conditions. We found that brain ageing processes are likely present in both COVID-19 and schizophrenia, albeit possibly driven by distinct processes. In addition, alterations in brain cell metabolism were observed, with schizophrenia primarily impacting amino acid metabolism and COVID-19 predominantly affecting carbohydrate metabolism. The enrichment of metabolic pathways associated with astrocytic components in both conditions suggests the involvement of this cell type in the pathogenesis. Both COVID-19 and schizophrenia influenced neurotransmitter systems, but with distinct impacts. Future studies exploring the underlying mechanisms linking brain ageing and metabolic dysregulation may provide valuable insights into the complex pathophysiology of these conditions and the increased vulnerability of schizophrenia patients to severe outcomes.

4.
Food Res Int ; 191: 114735, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059967

RESUMO

The present study was carried out to investigate the proximate composition, fatty acid (FA) profile and volatile compounds (VC) of cooked green licuri (Syagrus coronata) - an unripe stage that is then cooked - and naturally ripe licuri almonds. The FA profiles were determined by gas chromatography (GC) and the VC composition was evaluated using headspace-solid-phase microextraction coupled with GC-MS. The cooked green licuri presented higher moisture, and lower contents of ashes, proteins and lipids than naturally ripe licuri almonds. The FA profiles of cooked green licuri and naturally ripe licuri almonds showed that saturated FAs were predominant (80%) in both samples, and the concentrations of lauric, palmitic, and oleic acids in naturally ripe licuri almonds were higher than those in cooked green licuri. Limonene was the predominant compound in naturally ripe licuri almonds. The main class of VC in the cooked green licuri were aldehydes, with 3-methyl-butanal and furfural being the main species. Alcohols, such as 3-methyl-butanol and 2-heptanol, were the main class of VC in naturally ripe licuri almonds. Among the volatile compounds, 1-hexanol and 2-nonanone contributed to the aroma of cooked green licuri almonds, whereas 2-heptanone, ethanol, and limonene contributed to the aroma of naturally ripe licuri almonds (almonds not subjected to any cooking process). In a word, cooked green licuri and naturally riped licuri almonds, despite having different proximate compositions, present similar fatty acid profile and distinct aromatic characteristics. Therefore, cooked green licuri and naturally riped licuri almonds are an alternative source of nutrient and could be investigated for the use in the food industry to enhance flavor and aroma to new products.


Assuntos
Culinária , Ácidos Graxos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Ácidos Graxos/análise , Brasil , Microextração em Fase Sólida , Cicloexenos/análise , Terpenos/análise , Limoneno/análise , Odorantes/análise , Ácido Palmítico/análise , Ácido Oleico/análise , Aldeídos/análise , Ácidos Láuricos/análise , Pentanóis/análise
5.
Photochem Photobiol Sci ; 23(7): 1373-1392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733516

RESUMO

Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.


Assuntos
Biodiversidade , Brasil , Animais , Luminescência , Dinoflagellida , Vaga-Lumes , Cnidários , Ecossistema
6.
Neuroscience ; 551: 153-165, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38821242

RESUMO

The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.


Assuntos
Coração , Pulmão , Neurônios Motores , Nervo Vago , Animais , Neurônios Motores/fisiologia , Masculino , Coração/fisiologia , Coração/inervação , Pulmão/fisiologia , Pulmão/inervação , Nervo Vago/fisiologia , Bulbo/fisiologia , Bulbo/citologia , Bulbo/metabolismo , Potenciais de Ação/fisiologia , Ratos Sprague-Dawley , Ratos , Técnicas de Patch-Clamp
8.
Life (Basel) ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38541661

RESUMO

(1) Background: Species of the genus Cymbopogon and its essential oil are known for their antioxidant and hypoglycemic effects. This study aimed to investigate the impact of the essential oil of Cymbopogon flexuosus (EOCF), and its major component, citral, on glycemic, lipid, antioxidant parameters, and oxidative stress in a type 1 diabetes (DM1) rat model. (2) Methods: Initially, EOCF was analyzed by Gas chromatography-mass spectrometry (GC-MS) and the antioxidant activity of EOCF and citral was evaluated. Next, male Wistar rats (3 months old, 200-250 g) induced with DM1 using Streptozotocin (STZ) were divided into four groups: negative control supplemented with an 80% Tween solution, two groups of animals supplemented with EOCF (32 mg/kg and 64 mg/kg) and with citral (32 mg/kg), and treated for 14 days. Measurements of blood glucose levels and body weight were taken; after euthanasia, biochemical markers, including lipid profile, uric acid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), were evaluated. (3) Results: The predominant compounds in EOCF were α-citral (53.21%) and neral (19.42%), constituting 72.63% citral. EOCF showed good antioxidant activity, significantly greater than citral. EOCF supplementation demonstrated a mitigating effect on glycemic, lipid, and hepatic abnormalities induced by DM1. (4) Conclusions: EOCF emerges as a promising therapeutic option for the management of DM1.

9.
Sci Rep ; 14(1): 7375, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548777

RESUMO

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteômica , Pandemias
10.
Arch Toxicol ; 98(6): 1877-1890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494580

RESUMO

Cannabis is the most used illicit substance for recreational purposes around the world. However, it has become increasingly common to witness the use of approved cannabis preparations for symptoms management in various diseases. The aim of this study was to investigate the effects of cannabis nano emulsion in the liver of Wistar rats, with different proportions of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). For this, a total of 40 male Wistar rats were distributed into 5 groups, as follows (n = 8 per group): Control: G1, Experimental group (G2): treated with cannabis nano emulsion (THC and CBD) at a dose of 2.5 mg/kg, Experimental group (G3): treated with cannabis nano emulsion (THC and CBD) at a dose of 5 mg/kg, Experimental group (G4): treated with cannabis nano emulsion (CBD) at a dose of 2.5 mg/kg; Experimental group (G5): treated with cannabis nano emulsion (CBD) at a dose of 5 mg/kg. Exposure to the nano emulsion was carried out for 21 days, once a day, orally (gavage). Our results showed that cannabis nano emulsions at higher doses (5 mg/kg), regardless of the composition, induced histopathologic changes in the liver (G3 and G5) in comparison with the control group. In line with that, placental glutathione S-transferase (GST-P) positive foci increased in both G3 and G5 (p < 0.05), as well as the immune expression of Ki-67, vascular endothelial growth factor (VEGF) and p53 (p < 0.05). Also, the nano emulsion intake induced an increase in the number of micronucleated hepatocytes in G5 (p < 0.05) whereas G3 showed an increase in binucleated cells (p < 0.05). As for metanuclear alterations, karyolysis and pyknosis had an increased frequency in G3 (p < 0.05). Taken together, the results show that intake of cannabis nano emulsion may induce degenerative changes and genotoxicity in the liver in higher doses, demonstrating a clear dose-response relationship.


Assuntos
Canabidiol , Cannabis , Relação Dose-Resposta a Droga , Emulsões , Fígado , Ratos Wistar , Animais , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Canabidiol/toxicidade , Canabidiol/administração & dosagem , Cannabis/química , Dronabinol/toxicidade , Dronabinol/administração & dosagem , Ratos , Nanopartículas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia
11.
Phytochem Anal ; 35(4): 889-902, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369344

RESUMO

INTRODUCTION: The species Lantana camara is used in folk medicine. The biological activities of this medicinal plant are attributable to the presence of various derivatives of triterpenoids and phenolic compounds present in its preparations, indicating excellent economic potential. OBJECTIVE: In this study, the operational conditions of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were optimized using Box-Behnken design to improve the total phenolic content (TPC) recovered in hydroethanolic extracts of L. camara leaves. MATERIAL AND METHODS: The TPC, total flavonoid content (TFC), and antioxidant activities of the hydroalcoholic extracts of L. camara, prepared by UAE and MAE under the optimized extraction conditions, were compared with those of the extracts obtained by conventional extraction methods. RESULTS: Under the optimal conditions, the extracts obtained by UAE (35% ethanol, 25 min, and a solvent-to-solid ratio of 60:1 mL/g) and by MAE (53% ethanol, 15 min, and 300 W) provided high yields of 32.50% and 38.61% and TPC values of 102.89 and 109.83 mg GAE/g DW, respectively. The MAE extract showed the best results with respect to TPC, TFC, and antioxidant activities, followed by extracts obtained by UAE, Soxhlet extraction, decoction, maceration, and infusion, in that order. CONCLUSION: The results obtained indicate that L. camara may be used as an important source of antioxidant phenolic compounds to obtain products with high biological and economic potential, especially when the extraction process is performed under appropriate conditions using MAE and/or UAE, employing environmentally friendly solvents such as water and ethanol.


Assuntos
Antioxidantes , Lantana , Micro-Ondas , Fenóis , Extratos Vegetais , Folhas de Planta , Folhas de Planta/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/análise , Lantana/química , Fenóis/análise , Fenóis/isolamento & purificação , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas/métodos , Flavonoides/análise , Flavonoides/isolamento & purificação , Ondas Ultrassônicas , Ultrassom/métodos
12.
J Neurochem ; 168(3): 238-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332572

RESUMO

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Clozapina/farmacologia , Haloperidol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Proteoma/metabolismo , N-Metilaspartato , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteômica , Antipsicóticos/farmacologia , Encéfalo/metabolismo
13.
Psychiatry Res ; 332: 115682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198856

RESUMO

Background Suicide is one of the leading global causes of death. Behavior patterns from suicide ideation to completion are complex, involving multiple risk factors. Advances in technologies and large-scale bioinformatic tools are changing how we approach biomedical problems. The "omics" field may provide new knowledge about suicidal behavior to improve identification of relevant biological pathways associated with suicidal behavior. Methods We reviewed transcriptomic, proteomic, and metabolomic studies conducted in blood and post-mortem brains from individuals who experienced suicide or suicidal behavior. Omics data were combined using systems biology in silico, aiming at identifying major biological mechanisms and key molecules associated with suicide. Results Post-mortem samples of suicide completers indicate major dysregulations in pathways associated with glial cells (astrocytes and microglia), neurotransmission (GABAergic and glutamatergic systems), neuroplasticity and cell survivor, immune responses and energy homeostasis. In the periphery, studies found alterations in molecules involved in immune responses, polyamines, lipid transport, energy homeostasis, and amino and nucleic acid metabolism. Limitations We included only exploratory, non-hypothesis-driven studies; most studies only included one brain region and whole tissue analysis, and focused on suicide completers who were white males with almost none confounding factors. Conclusions We can highlight the importance of synaptic function, especially the balance between the inhibitory and excitatory synapses, and mechanisms associated with neuroplasticity, common pathways associated with psychiatric disorders. However, some of the pathways highlighted in this review, such as transcriptional factors associated with RNA splicing, formation of cortical connections, and gliogenesis, point to mechanisms that still need to be explored.


Assuntos
Transtornos Mentais , Ideação Suicida , Masculino , Humanos , Proteômica , Fatores de Risco , Perfilação da Expressão Gênica
14.
Biochem Soc Trans ; 52(1): 163-176, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288874

RESUMO

The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Reprogramação Celular , Doenças Neurodegenerativas/metabolismo
15.
Food Res Int ; 175: 113684, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129028

RESUMO

The demand for organic vegetables is increasing worldwide, which has led to the growth of organic agriculture. However, information on chemical composition and antioxidant activity in vegetables grown organically under controlled conditions remains uncertain. For this study, 3 vegetables widely consumed in Brazil were cultivated in controlled organic and conventional cultivation systems: lettuce, coriander and tomato. Their chemical composition, mineral concentration, phenolic compound content, flavonoids and antioxidant activity (AA) were evaluated. The analyses of chemical and mineral composition revealed differences between the cultivation systems. Organic lettuce presented higher content of ashes, calcium and potassium. A higher content of phenolic compounds and flavonoids was observed in most organic vegetables. Using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay, the organic tomato exhibited higher AA compared to conventional, while the ferric-reducing antioxidant power (FRAP) method showed higher AA for organic coriander and tomato than theirs conventional version. The correlation between bioactive compounds and AA was positive, higher and stronger for organic vegetables, considering phenolic compounds (including flavonoids) and DPPH or FRAP antioxidant activity. Principal Component Analysis (PCA) disclosed that organic lettuce and coriander were grouped according bioactive components. In general, organic vegetables showed better results for bioactive compounds and antioxidant activity.


Assuntos
Antioxidantes , Flavonoides , Antioxidantes/análise , Flavonoides/análise , Verduras/química , Fenóis/análise , Minerais
16.
Biomarkers ; 28(8): 692-702, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38131287

RESUMO

BACKGROUND AND OBJECTIVES: In order to detect genetic damage, different methods have been developed, such as micronuclei and comet assay. The comet assay presents some advantages when compared to the other aforementioned methods, including wide versatility, as any eukaryotic cell can be evaluated at an individual cellular level. In this context, the aim of this systematic review was designed to help further elucidate the following question: is the comet assay a suitable biomarker of in vivo oral carcinogenesis? MATERIAL AND METHODS: The present systematic review was performed in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Full manuscripts from 18 studies were carefully selected in this setting. RESULTS: A total of 15 studies demonstrated positive findings for genotoxicity in peripheral blood or oral cells in patients with pre-malignant lesions or oral cancer. In the quality assessment of studies, 1 was classified as Strong, 5 were considered as Moderate, and 12 were classified as Weak. CONCLUSION: In summary, the comet assay can be a useful biomarker for oral carcinogenesis. However, further studies with more strict parameters are suggested (with less uncontrolled confounders) in order to increase findings reliability for diagnosis of oral potentially malignant lesions.


Assuntos
Dano ao DNA , Neoplasias Bucais , Humanos , Carcinogênese/genética , Ensaio Cometa/métodos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Reprodutibilidade dos Testes
17.
Mol Neurobiol ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999871

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.

18.
Gut Microbes ; 15(2): 2249146, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37668317

RESUMO

Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Camundongos , SARS-CoV-2 , Antibacterianos , Progressão da Doença
19.
Biol Psychiatry Glob Open Sci ; 3(3): 329-339, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519459

RESUMO

Neuroscience is currently one of the most challenging research fields owing to the enormous complexity of the mammalian nervous system. We are yet to understand precise transcriptional programs that govern cell fate during neurodevelopment, resolve the connectome of the mammalian brain, and determine the etiology of various neurodegenerative and psychiatric disorders. Technological advances in the past decade, notably single-cell RNA sequencing, have enabled huge progress in our understanding of such features. Our current knowledge of the transcriptome is largely derived from bulk RNA sequencing, which reveals only the average gene expression of millions of cells, potentially missing out on minor transcriptome differences between cells detectable only at single-cell resolution. Since 2009, several single-cell RNA sequencing techniques have emerged that enable the accurate classification of neuronal and glial cell subtypes beyond classical molecular markers and electrophysiological features and allow the identification of previously unknown cell types. Furthermore, it enables the interrogation of molecular and disease-relevant mechanisms and offers further possibilities for the discovery of new drug targets and disease biomarkers. This review intends to familiarize the reader with the main single-cell RNA sequencing techniques developed throughout the past decade and discusses their application in the fields of brain cell taxonomy, neurodevelopment, and psychiatric disorders.

20.
Eur Arch Otorhinolaryngol ; 280(9): 4261-4269, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37256344

RESUMO

PURPOSE: The aim of this study was to evaluate whether sleep deprivation can induce degenerative changes in rat sublingual glands. METHODS: For this purpose, a total of 24 males were distributed into three groups: control (n = 8), in which the animals were not subjected to any procedure; sleep deprivation (n = 8) in which the animals were submitted to sleep deprivation for 96 h; recovery (n = 8), in which the animals were subjected to paradoxical sleep deprivation for 96 consecutive hours followed by 96 h without intervention. Morphological changes in sublingual glands as well as the immunoexpressions of some proteins, such as Ki-67, p16, cleaved caspase-3 and BCL-2 were investigated in this setting. RESULTS: The results showed that paradoxical sleep deprivation induced tissue degeneration as a result of the presence of pyknosis, vacuoles and areas of salivary retention, in the experimental groups. Expression of cleaved caspase 3 and BCL-2 were increased in both sleep deprivation and recovery groups. The analysis of Ki-67 showed an increase in expression only in the recovery group, associated with a decrease in p16 levels. CONCLUSION: Sleep deprivation can induce a degenerative process in the parenchyma of sublingual gland by means of dysregulation of apoptosis associated with proliferative activity.


Assuntos
Privação do Sono , Glândula Sublingual , Ratos , Animais , Masculino , Privação do Sono/complicações , Privação do Sono/metabolismo , Ratos Wistar , Glândula Sublingual/metabolismo , Sono REM , Antígeno Ki-67
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA