Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(4): 780-793, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174493

RESUMO

Insect-pathogen dynamics can show seasonal and inter-annual variations that covary with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies Danaus plexippus are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.


Assuntos
Borboletas , Parasitos , Migração Animal , Animais , Borboletas/parasitologia , México , Melhoramento Vegetal , Estações do Ano , Estados Unidos
2.
Mol Ecol ; 29(14): 2567-2582, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32542770

RESUMO

Monarch butterflies are known for their spectacular annual migration in eastern North America, with millions of monarchs flying up to 4,500 km to overwintering sites in central Mexico. Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct evolutionary units, but genomic studies to support this notion are lacking. We used a tethered flight mill to show that migratory eastern monarchs have greater flight performance than western monarchs, consistent with their greater migratory distances. However, analysing more than 20 million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic diversity, and demographic analyses indicated similar effective population sizes and ongoing gene flow between eastern and western monarchs. Gene expression analysis of a subset of candidate genes during active flight revealed differential gene expression related to nonmuscular motor activity. Our results demonstrate that eastern and western monarchs maintain migratory differences despite ongoing gene flow, and suggest that migratory differences between eastern and western monarchs are not driven by select major-effects alleles. Instead, variation in migratory distance and destination may be driven by environmentally induced differential gene expression or by many alleles of small effect.


Assuntos
Migração Animal , Borboletas , Fluxo Gênico , Genética Populacional , Alelos , Animais , Borboletas/genética , Voo Animal , Genoma de Inseto , Genômica , México , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
PLoS Biol ; 16(8): e2005712, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30130363

RESUMO

In the malaria parasite P. falciparum, drug resistance generally evolves first in low-transmission settings, such as Southeast Asia and South America. Resistance takes noticeably longer to appear in the high-transmission settings of sub-Saharan Africa, although it may spread rapidly thereafter. Here, we test the hypothesis that competitive suppression of drug-resistant parasites by drug-sensitive parasites may inhibit evolution of resistance in high-transmission settings, where mixed-strain infections are common. We employ a cross-scale model, which simulates within-host (infection) dynamics and between-host (transmission) dynamics of sensitive and resistant parasites for a population of humans and mosquitoes. Using this model, we examine the effects of transmission intensity, selection pressure, fitness costs of resistance, and cross-reactivity between strains on the establishment and spread of resistant parasites. We find that resistant parasites, introduced into the population at a low frequency, are more likely to go extinct in high-transmission settings, where drug-sensitive competitors and high levels of acquired immunity reduce the absolute fitness of the resistant parasites. Under strong selection from antimalarial drug use, however, resistance spreads faster in high-transmission settings than low-transmission ones. These contrasting results highlight the distinction between establishment and spread of resistance and suggest that the former but not the latter may be inhibited in high-transmission settings. Our results suggest that within-host competition is a key factor shaping the evolution of drug resistance in P. falciparum.


Assuntos
Adaptação Biológica/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Plasmodium falciparum/fisiologia , África Subsaariana , Animais , Antimaláricos/uso terapêutico , Culicidae , Transmissão de Doença Infecciosa , Resistência a Medicamentos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Humanos , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , América do Sul
4.
PLoS One ; 10(11): e0141371, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606389

RESUMO

Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.


Assuntos
Apicomplexa/fisiologia , Borboletas/fisiologia , Migração Animal , Animais , Borboletas/parasitologia , Voo Animal , Interações Hospedeiro-Patógeno , México , Carga Parasitária , Esporos de Protozoários/fisiologia
5.
Mol Ecol ; 21(14): 3433-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22574833

RESUMO

Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.


Assuntos
Migração Animal , Borboletas/genética , Variação Genética , Genética Populacional , Animais , Conservação dos Recursos Naturais , Havaí , México , Repetições de Microssatélites , Nova Zelândia , América do Norte , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA