Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta ; 260(5): 113, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367236

RESUMO

MAIN CONCLUSION: This study provides evidence about the relationship between Target of Rapamycin (TOR) kinase and the signal molecule nitric oxide (NO) in plants. We showed that sucrose (SUC)-mediated TOR activation of root apical meristem (RAM) requires NO and that NO, in turn, participates in the regulation of TOR signaling. Nitric oxide (NO) constitutes a signal molecule that regulates important target proteins related to growth and development and also contributes to metabolic reprogramming that occurs under adverse conditions. Taking into account the important role of NO and its relationship with Target of Rapamycin (TOR) signaling in animals, we wondered about the putative link between both pathways in plants. With this aim, we studied a TOR-dependent process which is the reactivation of the root apical meristem (RAM) in Arabidopsis thaliana. We used pharmacological and genetic tools to evaluate the relationship between NO and TOR on the sugar induction of RAM, using SNP as NO donor, cPTIO as NO scavenger and the nitrate reductase (NR) mutant nia2. The results showed that sucrose (SUC)-mediated TOR activation of the RAM requires NO and that NO, in turn, participates in the regulation of TOR signaling. Interestingly, TOR activation induced by sugar increased the NO levels. We also observed that NO could mediate the repression of SnRK1 activity by SUC. By computational prediction we found putative S-nitrosylation sites in the TOR complex proteins and the catalytic subunit of SnRK1, SnRK1.1. The present work demonstrates for the first time a link between NO and TOR revealing the complex interplay between the two pathways in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema , Óxido Nítrico , Transdução de Sinais , Sacarose , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Sacarose/metabolismo , Meristema/genética , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfatidilinositol 3-Quinases
2.
Plant Sci ; 323: 111390, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868347

RESUMO

Target of rapamycin (TOR) is a master regulator that controls growth and metabolism by integrating external and internal signals. Although there was a great progress in the study of TOR in plants and in the model alga Chlamydomonas, scarce data are available in other green algae. Thus, in this work we studied TOR signaling in Ostreococcus tauri, the smallest free-living eukaryote described to date. This picoalga is particularly important because it has a key site at the base of the green lineage and is part of the marine phytoplankton, contributing to global photosynthesis. We investigated OtTOR complex in silico and experimentally, by using first- and second-generation TOR inhibitors, such as rapamycin and PP242. We analyzed the effect of TOR down-regulation on cell growth and on the accumulation of carbon reserves. The results showed that O. tauri responds to TOR inhibitors more similarly to plants than to Chlamydomonas, being PP242 a valuable tool to study this pathway. Besides, Ottor expression analysis revealed that the kinase is dynamically regulated under nutritional stress. Our data indicate that TOR signaling is conserved in O. tauri and we propose this alga as a good and simple model for studying TOR kinase and its regulation.


Assuntos
Clorófitas , Sirolimo , Clorófitas/metabolismo , Fotossíntese , Transdução de Sinais , Sirolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA