RESUMO
The present study aimed to investigate the in vitro mutagenic activity of Origanum majorana essential oil. The most abundant compounds identified by GC-MS were γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%), and sabinene (10.8%). Mutagenicity was evaluated by the Salmonella/microsome test using the preincubation procedure on TA98, TA97a, TA100, TA102, and TA1535 Salmonella typhimurium strains, in the absence or in the presence of metabolic activation. Cytotoxicity was detected at concentrations higher than 0.04 µL/plate in the absence of S9 mix and higher than 0.08 µL/plate in the presence of S9 mix and no gene mutation increase was observed. For the in vitro mammalian cell micronucleus test, V79 Chinese hamster lung fibroblasts were used. Cytotoxicity was only observed at concentrations higher than or equal to 0.05 µg/mL. Moreover, when tested in noncytotoxic concentrations, O. majorana essential oil was not able to induce chromosome mutation. The results from this study therefore suggest that O. majorana essential oil is not mutagenic at the concentrations tested in the Salmonella/microsome and micronucleus assays.
Assuntos
Testes para Micronúcleos , Testes de Mutagenicidade , Óleos Voláteis/farmacologia , Origanum/química , Animais , Células Cultivadas , Cricetinae , Fibroblastos/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Mutagênicos , Salmonella typhimurium/efeitos dos fármacosRESUMO
Although the gastrin-releasing peptide receptor (GRPR) has recently emerged as a system importantly involved in regulating memory formation, the role of hippocampal GRPRs in memory remains controversial. The present study examined the effects of GRPR antagonism on memory consolidation in area CA1 of the hippocampus. Male Wistar rats received bilateral infusions of the GRPR antagonist [D-Tpi6, Leu13 psi(CH2NH)-Leu14] bombesin (6-14) (RC-3095; 1, 3, or 10 microg/side) into the dorsal hippocampus immediately after inhibitory avoidance (IA) training. RC-3095 at 1 microg impaired, whereas the dose of 10 microg enhanced, 24-h IA retention. A second experiment showed that the RC-3095-induced enhancement of memory consolidation was prevented by pretraining infusion of an otherwise ineffective dose of the gamma-aminobutyric acid type A (GABA(A)) receptor agonist muscimol. The results indicate that high doses of GRPR antagonists can induce enhancement of memory consolidation in the hippocampus. In addition, the memory-enhancing effect of GRPR antagonists might be mediated by inhibition of GABAergic transmission.