Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946598

RESUMO

The emergence of azole resistant Aspergillus spp., especially Aspergillus fumigatus, has been described in several countries around the world with varying prevalence depending on the country. To our knowledge, azole resistance in Aspergillus spp. has not been reported in the West Indies yet. In this study, we investigated the antifungal susceptibility of clinical and environmental isolates of Aspergillus spp. from Martinique, and the potential resistance mechanisms associated with mutations in cyp51A gene. Overall, 208 Aspergillus isolates were recovered from clinical samples (n = 45) and environmental soil samples (n = 163). They were screened for resistance to azole drugs using selective culture media. The Minimum Inhibitory Concentrations (MIC) towards voriconazole, itraconazole, posaconazole and isavuconazole, as shown by the resistant isolates, were determined using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) microdilution broth method. Eight isolates (A. fumigatus, n = 6 and A. terreus, n = 2) had high MIC for at least one azole drug. The sequencing of cyp51A gene revealed the mutations G54R and TR34/L98H in two A. fumigatus clinical isolates. Our study showed for the first time the presence of azole resistance in A. fumigatus and A. terreus isolates in the French West Indies.

2.
J Clin Microbiol ; 50(1): 66-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22075600

RESUMO

The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear ribosomal large subunit to reveal taxon-specific susceptibility profiles. The impressive phylogenetic diversity of the Mucorales was reflected in susceptibilities differing at family, genus, and species levels. Amphotericin B was the most active drug, though somewhat less against Rhizopus and Cunninghamella species. Posaconazole was the second most effective antifungal agent but showed reduced activity in Mucor and Cunninghamella strains, while voriconazole lacked in vitro activity for most strains. Genera attributed to the Mucoraceae exhibited a wide range of MICs for posaconazole, itraconazole, and terbinafine and included resistant strains. Cunninghamella also comprised strains resistant to all azoles tested but was fully susceptible to terbinafine. In contrast, the Lichtheimiaceae completely lacked strains with reduced susceptibility for these antifungals. Syncephalastrum species exhibited susceptibility profiles similar to those of the Lichtheimiaceae. Mucor species were more resistant to azoles than Rhizopus species. Species-specific responses were obtained for terbinafine where only Rhizopus arrhizus and Mucor circinelloides were resistant. Complete or vast resistance was observed for 5-fluorocytosine, caspofungin, and micafungin. Intraspecific variability of in vitro susceptibility was found in all genera tested but was especially high in Mucor and Rhizopus for azoles and terbinafine. Accurate molecular identification of etiologic agents is compulsory to predict therapy outcome. For species of critical genera such as Mucor and Rhizopus, exhibiting high intraspecific variation, susceptibility testing before the onset of therapy is recommended.


Assuntos
Antifúngicos/farmacologia , Variação Genética , Mucorales/classificação , Mucorales/efeitos dos fármacos , Filogenia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mucorales/genética , RNA Fúngico/genética , RNA Ribossômico/genética , Análise de Sequência de DNA
4.
Methods Mol Med ; 118: 143-52, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15888940

RESUMO

The increase in fungal infections and the change in fungal epidemiology is caused by the extensive use of antifungal agents to treat fungal infections that are being diagnosed in severly immunocompromised hosts. In addition, opportunistic fungal infections resistant to antifungal drugs have become increasingly common, and the armamentarium for treatment remains limited. A possible approach to overcoming these problems is to combine antifungal drugs, especially if the mechanisms of action are different. The in vitro test is the first step to evaluate possible antifungal combinations. In this chapter, the three most frequently used metholodologies are described: checkerboard, E-test, and time-kill curves. The description of each technique and intrepretaion of the results are addressed in detail.


Assuntos
Antifúngicos/administração & dosagem , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Quimioterapia Combinada , Fungos/isolamento & purificação , Humanos , Técnicas In Vitro , Micoses/tratamento farmacológico , Micoses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA