Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 207: 111050, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32163801

RESUMO

Encapsulation of three superoxide dismutase (SOD) functional mimics, [CuZn(dien)2(µ-Im)(ClO4)2]ClO4 (1), [Cu2(dien)2(µ-Im)(ClO4)2]ClO4 (2) (Im = imidazolate, dien = diethylenetriamine), and [CuZn(salpn)Cl2] (3) (H2salpn = 1,3-bis(salicylideneamino)propane) in mesoporous MCM-41 silica afforded three hybrid catalysts 1@MCM-41, 2@MCM-41 and 3@MCM-41. Spectroscopic and magnetic analyses of these materials confirmed the metal centers of the complexes keep the coordination sphere after insertion into the MCM-41 silica matrix. For the imidazolate-bridged complexes the silica channels restraint the relative orientation of the two metal ions. While 3@MCM-41 shows SOD activity significantly lower than the host-free complex, insertion of the imidazolate-bridged CuZn or Cu2 complexes by ion exchange onto mesoporous MCM-41 silica affords durable and recoverable supported catalysts with much better SOD activity than the free complexes. For confined imidazolate-bridged complexes, 1@MCM-41 and 2@MCM-41, the small pore size of the silica matrix improves the SOD activity more than a host with larger pores. This high SOD activity is attributed to the close-fitting of the complexes into the nanochannels of MCM-41 silica that favors the Cu active site and HImZn(or Cu) group stay in close proximity during catalysis.


Assuntos
Cobre/química , Compostos Organometálicos/química , Dióxido de Silício/química , Superóxido Dismutase/química , Zinco/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Imidazóis/química , Compostos Organometálicos/metabolismo , Espectrofotometria Ultravioleta , Superóxido Dismutase/metabolismo
2.
J Inorg Biochem ; 182: 29-36, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29407867

RESUMO

A new phenoxo-bridged diMnIII complex, Na[Mn2L(OH)2(H2O)2]·5H2O (1), obtained with the ligand L5- = 5­methyl­2­hydroxo­1,3­xylene­α,α­diamine­N,N,N',N'­tetraacetato, has been prepared and characterized. Mass spectrometry, conductivity, UV-visible, EPR and 1H NMR spectroscopic studies showed that the complex exists in solution as a monoanionic diMnIII complex. Complex 1 catalyzes H2O2 disproportionation with second-order rate constant kcat = 305(9) M-1 min-1 and without a time-lag phase. Based on spectroscopic results, the catalase activity of complex 1 in methanol involves a MnIII2/MnII2 redox cycle, which distinguishes this catalyst from other phenoxo-bridged diMn complexes that cycle between MnIIMnIII/MnIIIMnIV species. Addition of base stabilizes the catalyst, restrains demetallation during catalysis and causes moderate enhancement of catalase activity. The terminal carboxylate donors of 1 not only contribute as internal bases to assist deprotonation of H2O2 but also favor the formation of active homovalent diMn species, just as observed for the enzyme.


Assuntos
Catalase/metabolismo , Manganês/química , Manganês/metabolismo , Catalase/química , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , Oxirredução
3.
J Inorg Biochem ; 163: 162-175, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27426051

RESUMO

Two imidazolate-bridged diCuII and CuIIZnII complexes, [CuZn(dien)2(µ-Im)](ClO4)3·MeOH (1) and [Cu2(dien)2(µ-Im)](ClO4)3 (2) (Im = imidazole, dien=diethylenetriamine), and two complexes formed with Schiff base ligands, [CuZn(salpn)Cl2] (3) and [Cu2(salbutO)ClO4] (4) (H2salpn=1,3-bis(salicylidenamino)propane, H3salbutO=1,4-bis(salicylidenamino)butan-2-ol) have been prepared and characterized. The reaction of [Cu(dien)(ImH)](ClO4)2 with [Zn(dien)(H2O)](ClO4)2 at pH≥11 yields complex 1; at lower pH, the Cu3Zn tetranuclear complex [{(dien)Cu(µ-Im)}3Zn(OH2)(ClO4)2](ClO4)3 (1a) forms as the main reaction product. X-ray diffraction of 1a reveals that the complex contains a metal centered windmill-shaped cation having three blades with a central Zn ion and three peripheral capping Cu(dien) moieties bound to the central Zn ion through three imidazolate bridges. The four complexes are able to disproportionate O2- in aqueous medium at pH7.8, with relative rates 4>1>2≫3. [Cu2(salbutO)]+ (4) is the most easily reducible of the four complexes and exhibits the highest activity among the SOD models reported so far; a fact related to the ligand flexibility to accommodate the copper ion in both CuI and CuII oxidation states and the lability of the fourth coordination position of copper facilitating stereochemical rearrangements.


Assuntos
Cobre/química , Imidazóis/química , Modelos Químicos , Superóxido Dismutase/química , Superóxidos/química , Oxirredução , Bases de Schiff/química
4.
J Inorg Biochem ; 104(5): 496-502, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20129671

RESUMO

Two new Mn(III) complexes Na[Mn(5-SO(3)-salpnOH)(H(2)O)]5H(2)O (1) and Na[Mn(5-SO(3)-salpn)(MeOH)]4H(2)O (2) (5-SO(3)-salpnOH=1,3-bis(5-sulphonatosalicylidenamino)propan-2-ol, 5-SO(3)-salpn=1,3-bis(5-sulphonatosalicylidenamino)propane) have been prepared and characterized. Electrospray ionization-mass spectrometry, UV-visible and (1)H NMR spectroscopic studies showed that the two complexes exist in solution as monoanions [Mn(5-SO(3)-salpn(OH))(solvent)(2)](-), with the ligand bound to Mn(III) through the two phenolato-O and two imino-N atoms located in the equatorial plane. The E(1/2) of the Mn(III)/Mn(II) couple (-47.11 (1) and -77.80mV (2) vs. Ag/AgCl) allows these complexes to efficiently catalyze the dismutation of O(2)(-), with catalytic rate constants 2.4x10(6) (1) and 3.6x10(6) (2) M(-1)s(-1), and IC(50) values of 1.14 (1) and 0.77 (2) muM, obtained through the nitro blue tetrazolium photoreduction inhibition superoxide dismutase assay, in aqueous solution of pH 7.8. The two complexes are also able to disproportionate up to 250 equivalents of H(2)O(2) in aqueous solution of pH 8.0, with initial turnover rates of 178 (1) and 25.2 (2) mM H(2)O(2) min(-1)mM(-1)catalyst(-1). Their dual superoxide dismutase/catalase activity renders these compounds particularly attractive as catalytic antioxidants.


Assuntos
Antioxidantes/química , Ligantes , Manganês/química , Bases de Schiff/química , Água/química , Animais , Catalase/química , Catalase/metabolismo , Catálise , Técnicas Eletroquímicas , Humanos , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo
5.
Dalton Trans ; (43): 5156-66, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17077889

RESUMO

The diMn(III) complexes [Mn2(5-Me-salpentO)(mu-MeO)(mu-AcO)(H2O)Br] (1) and [Mn2(3-Me-salpentO)(mu-MeO)(mu-AcO)(MeOH)2]Br (2), where salpentOH = 1,5-bis(salicylidenamino)pentan-3-ol, were synthesised and structurally characterized. The two complexes include a bis(micro-alkoxo)(micro-acetato) triply-bridged diMn(III) core with an Mn...Mn separation of 2.93-2.94 A, the structure of which is retained upon dissolution. Complexes 1 and 2 show catalytic activity toward disproportionation of H2O2, with first-order dependence on the catalyst, and saturation kinetics on [H2O2], in methanol and DMF. In DMF, the two complexes are able to disproportionate at least 1500 eq. of H2O2 without significant decomposition, while in methanol, they rapidly lose activity with formation of a non-coupled Mn(II) species. Electrospray ionisation mass spectrometry, EPR and UV/vis spectroscopy used to monitor the reaction suggest that the major active form of the catalyst occurs in the Mn2(III) oxidation state during cycling. The correlation between log(k(cat)) and the redox potentials of 1, 2 and analogous complexes of other X-salpentOH derivatives indicates that, in this series, the oxidation of the catalyst is probably the rate-limiting step in the catalytic cycle. It is also noted that formation of the catalyst-peroxide adduct is more sensitive to steric effects in DMF than in methanol. Overall, kinetics and spectroscopic studies of H2O2 dismutation by these complexes converge at a catalytic cycle that involves the Mn2(III) and Mn2(IV) oxidation states.


Assuntos
Catalase/química , Manganês/química , Compostos Organometálicos/química , Catálise , Cristalografia por Raios X , Eletroquímica , Cinética , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos
6.
J Inorg Biochem ; 100(10): 1660-71, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16843530

RESUMO

Two new diMn(III) complexes [Mn(2)(III)L(1)(mu-AcO)(mu-MeO)(methanol)(2)]Br (1) and [Mn(2)(III)L(2)(mu-AcO)(mu-MeO)(methanol)(ClO(4))] (2) (L(1)H(3)=1,5-bis(2-hydroxybenzophenylideneamino)pentan-3-ol; L(2)H(3)=1,5-bis(2-hydroxynaphtylideneamino)pentan-3-ol) were synthesized and structurally characterized. Structural studies evidence that these complexes have a bis(mu-alkoxo)(mu-carboxylato) triply bridged diMn(III) core in the solid state and in solution, with two substitution-labile sites--one on each Mn ion--in cis-position. The two complexes show catalytic activity toward disproportionation of H(2)O(2), with saturation kinetics on [H(2)O(2)], in methanol and dimethyl formamide at 25 degrees C. Spectroscopic monitoring of the H(2)O(2) disproportionation reaction suggests that (i) complexes 1 and 2 dismutate H(2)O(2) by a mechanism involving redox cycling between Mn(2)(III) and Mn(2)(IV), (ii) the complexes retain the dinuclearity during catalysis, (iii) the active form of the catalyst contains bound acetate, and (iv) protons favors the formation of inactive Mn(II) species. Comparison to other dimanganese complexes of the same family shows that the rate of catalase reaction is not critically dependent on the redox potential of the catalyst, that substitution of phenolate by naphtolate in the Schiff base ligand favors formation of the catalyst-substrate adduct, and that, in the non-protic solvent, the bulkier substituent at the imine proton position hampers the binding to the substrate.


Assuntos
Catalase/química , Peróxido de Hidrogênio/química , Compostos de Manganês/química , Manganês/química , Catalase/metabolismo , Química Inorgânica/métodos , Eletroquímica/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Magnetismo , Manganês/metabolismo , Compostos de Manganês/metabolismo , Metanol , Estrutura Molecular , Bases de Schiff , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho
7.
J Inorg Biochem ; 98(11): 1806-17, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15522408

RESUMO

The dimanganese(III,III) complexes [Mn(2)(III)(5-NO(2)-salpentO)(mu-AcO)(mu-MeO)(methanol)(2)]Y (1: Y=Br, 2a: Y=I, 2b: Y=I(3)), [Mn(2)(III)(5-NO(2)-salpentO)(mu-AcO)(mu-MeO)(methanol)(ClO(4))] (3) and [Mn(2)(III)(5-Cl-salpentO)(mu-AcO)(mu-MeO)(methanol)(2)]Br (4), where salpentOH is the symmetrical Schiff base ligand 1,5-bis(salicylidenamino)pentan-3-ol, were synthesised and structurally characterized. Complex 2b crystallises in the monoclinic system, space group P2(1)/c, and exhibits Mn. . .Mn separation of 2.911 A. This Mn. . .Mn separation is very close to the other characterized (mu-alkoxo)(2)(mu-acetato)Mn(2)(III) complexes of X-salpentOH (X=MeO, Br and H) and reveals that the aromatic substituent has little influence on the geometric parameters of the bimetallic core. A correlation between the electronic character of the different ring substituents, the redox potentials of the dinuclear complexes and their catalase activity was evidenced. Complexes 1-4 show saturation kinetics with [H(2)O(2)] and the H(2)O(2) disproportionation involves redox cycling between the Mn(2)(III)/Mn(2)(IV) levels. The catalytic activity studies show that bound acetate is required for catalase activity and that the acetato and alkoxo bridges serve as internal bases facilitating the proton transfer coupled to oxidation of the metal centre.


Assuntos
Catalase/metabolismo , Manganês/química , Eletroquímica , Cinética , Modelos Moleculares , Conformação Molecular , Espectrofotometria , Termodinâmica
8.
Dalton Trans ; (15): 2288-96, 2004 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-15278120

RESUMO

The oxidation of d-galacturonic acid by Cr(VI) yields the aldaric acid and Cr(III) as final products when a 30-times or higher excess of the uronic acid over Cr(VI) is used. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species, with Cr(VI) and the two intermediate species reacting with galacturonic acid at comparable rates. The rate of disappearance of Cr(VI), Cr(IV) and Cr(V) depends on pH and [substrate], and the slow reaction step of the Cr(VI) to Cr(III) conversion depends on the reaction conditions. The EPR spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH < or = 5 with the uronic acid bound to Cr(V) through the carboxylate and the alpha-OH group of the furanose form or the ring oxygen of the pyranose form. Six-coordinated oxo-Cr(V) monochelates are observed as minor species in addition to the major five-coordinated oxo-Cr(V) bischelates only for galacturonic acid : Cr(VI) < or =10 : 1, in 0.25-0.50 M HClO(4). At pH 7.5 the EPR spectra show the formation of a Cr(V) complex where the vic-diol groups of Galur participate in the bonding to Cr(V). At pH 3-5 the Galur-Cr(V) species grow and decay over short periods in a similar way to that observed for [Cr(O)(alpha-hydroxy acid)(2)](-). The lack of chelation at any vic-diolate group of Galur when pH < or = 5 differentiates its ability to stabilise Cr(V) from that of neutral saccharides that form very stable oxo-Cr(V)(diolato)(2) species at pH > 1.


Assuntos
Cromo/química , Ácidos Hexurônicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Ésteres/química , Cinética , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA