Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39244797

RESUMO

Zinc is a significant source of heavy metal pollution that poses risks to both human health and biodiversity. Excessive concentrations of zinc can hinder the growth and development of insects and trigger cell death through oxidative damage. The midgut is the main organ affected by exposure to heavy metals. The silkworm, a prominent insect species belonging to the Lepidoptera class and widely used in China, serves as a model for studying the genetic response to heavy metal stress. In this study, high-throughput sequencing technology was employed to investigate detoxification-related genes in the midgut that are induced by zinc exposure. A total of 11,320 unigenes and 14,723 transcripts were identified, with 553 differentially expressed genes (DEGs) detected, among which 394 were up-regulated and 159 were down-regulated. The Gene Ontology (GO) analysis revealed that 452 DEGs were involved in 18 biological process subclasses, 14 cellular component subclasses and 8 molecular functional subclasses. Furthermore, the KEGG analysis demonstrated enrichment in pathways such as Protein digestion, absorption and Lysosome. Validation of the expression levels of 9 detoxification-related DEGs through qRT-PCR confirmed the accuracy of the RNA-seq results. This study not only contributes new insights into the detoxification mechanisms mechanism of silkworms against zinc contamination, but also serves as a foundation basis for understanding the molecular detoxification processes in lepidopteran insects.

2.
Front Immunol ; 15: 1411936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108270

RESUMO

Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.


Assuntos
Astacoidea , Imunidade Inata , Filogenia , Animais , Astacoidea/imunologia , Astacoidea/genética , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo
3.
Int J Biol Macromol ; 277(Pt 2): 134231, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074699

RESUMO

To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.


Assuntos
Sistema Enzimático do Citocromo P-450 , Xenobióticos , ortoaminobenzoatos , Animais , ortoaminobenzoatos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Inativação Metabólica/genética , Astacoidea/genética , Astacoidea/efeitos dos fármacos , Astacoidea/metabolismo , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Perfilação da Expressão Gênica , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
4.
Insect Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613398

RESUMO

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

5.
Pest Manag Sci ; 80(8): 3752-3762, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488318

RESUMO

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.


Assuntos
Apoptose , Bombyx , Larva , Nucleopoliedrovírus , Canais de Ânion Dependentes de Voltagem , Animais , Bombyx/virologia , Bombyx/genética , Nucleopoliedrovírus/fisiologia , Larva/virologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Interferência de RNA
6.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323672

RESUMO

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Assuntos
Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/enzimologia , Bombyx/genética , Bombyx/virologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/virologia , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofatores de Molibdênio , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Ácido Úrico/metabolismo
7.
Front Immunol ; 13: 906294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757717

RESUMO

Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.


Assuntos
Insetos , Integrinas , Animais , Fagocitose , Transdução de Sinais
8.
Front Immunol ; 13: 1039956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703962

RESUMO

The yellow catfish (Pelteobagrus fulvidraco) is a freshwater fish with high economic value in eastern China. Nevertheless, pathogens causing bacterial diseases in P. fulvidraco have brought about huge economic loss and high mortality in artificial aquaculture. For disease control, it is critical to further understand the immune system of yellow catfish and immune-related genes with which they respond to pathogenic infections. In this study, high-throughput sequencing methods were used to analyze the transcriptomic spectrum of the head kidney from P. fulvidraco challenged by Vibrio cholera. A total of 45,544 unique transcript fragments (unigenes) were acquired after assembly and annotation, with an average length of 1,373 bp. Additionally, 674 differentially expressed genes (DEGs) were identified after stimulation with V. cholerae, 353 and 321 genes were identified as remarkably up- or downregulated, respectively. To further study the immune-related DEGs, we performed KEGG enrichment and GO enrichment. The results showed gene regulation of response to stimulus, immune response, immune system progress, response to external stimuli and cellular response to stimuli. Analysis of KEGG enrichment is important to identify chief immune related pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results indicated 10 immune response genes that were found to be upregulated compared to a control group after 6 h of V. cholerae challenging. In summary, the results of our study are helpful to determine the defense mechanisms and immune system responses of yellow catfish in reaction to bacterial challenges.


Assuntos
Peixes-Gato , Proteínas de Peixes , Animais , Rim Cefálico/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
9.
Genomics ; 113(1 Pt 2): 1257-1264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949684

RESUMO

This study isolated CFI gene from Pelteobagrus fulvidraco and named it PfCFI. The cDNA of PfCFI is 2374 bp long, including a 52 bp 5' untranslated sequence, a 222 bp 3' untranslated sequence, and an open reading frame (ORF) of 2100 bp encoding polypeptide consisting of 699 amino acids. Phylogenetic analysis revealed that the PfCFI was closely related to CFI of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis indicate that there is the PfCFI gene which expressed in all the rest of tested tissues in varied levels, and mainly distributed in liver and least in heart. The reseachers induce the expressions level of PfCFI gene in liver, spleen, head kidney and blood at different points in time after challenged with lipopolysaccharide (LPS), and polyriboinosinic polyribocytidylic acid (poly I:C), respectively. Together these results suggested that CFI gene plays an important role in resistance to pathogens in yellow catfish immunity.


Assuntos
Peixes-Gato/genética , Fator I do Complemento/genética , Proteínas de Peixes/genética , Imunidade Inata , Animais , Peixes-Gato/imunologia , Fator I do Complemento/metabolismo , Proteínas de Peixes/metabolismo , Rim/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo
10.
Pest Manag Sci ; 77(1): 208-216, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32677739

RESUMO

BACKGROUND: Camptothecin (CPT) and matrine (MAT) have potential as botanical pesticides against several pest species. However, the mechanisms of metabolic and physiological changes in pests induced by CPT and MAT are unknown. In this study, a toxicological test, an NMR-based metabolomic study, an enzymatic test, and an RT quantitative PCR (RT-qPCR) experiment were all conducted to examine the effect of CPT and MAT on Spodoptera litura. RESULTS: CPT (0.5-1%) exerted high toxicity against larvae of S. litura and caused growth stagnation and high mortality of larvae. A variety of metabolites were significantly influenced by 0.5% CPT, including several energy-related metabolites such as trehalose, lactate, succinate, citrate, malate, and fumarate. In contrast, MAT showed low toxicity against larvae and induced almost no changes in hemolymph metabolites of S. litura. Enzymatic tests showed that trehalase activity was significantly decreased in larvae after feeding with 0.5% CPT. RT-qPCR showed that the transcription levels of alanine aminotransferase, malate dehydrogenase, and isocitrate dehydrogenase were decreased while lactate dehydrogenase was increased in the 0.5% CPT-treated group. CONCLUSIONS: These data indicate that one of the important mechanisms of CPT against S. litura larvae is via the inhibition of trehalose hydrolysis and glycolysis. Our findings also suggest that CPT exhibits a stronger toxicological effect than MAT against S. litura, which provides basic information for the application of CPT in the control of S. litura or other lepidoptera pests.


Assuntos
Praguicidas , Alcaloides , Animais , Camptotecina/toxicidade , Larva , Quinolizinas , Spodoptera , Matrinas
11.
Fish Shellfish Immunol ; 110: 67-74, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33383178

RESUMO

Chitinase can degrade chitin and play an essential role in animal immunity and plant defense. The immune functions of Chitinase in Procambarus clarkii (P. clarkii) remain to elucidate. Here, we identified PcChitinase 2 gene sequence from P. clarkii and studied its spatial and temporal expression profiles. The PcChitinase 2 transcribed unequally in different tissues; however, its expression was highest in those of stomach, gut, and hepatopancreas. The challenge with lipolysaccharide or peptidoglycan significantly up-regulated the expression of PcChitinase 2 in hepatopancreas. The knockdown of the PcChitinase 2 gene by double-stranded RNA suppressed most of the Toll-pathway-related immune genes (phospholipase, lectin, sptazle Cactus, serine proteikinase, anti-lipopolysaccharide factor, and Toll) production were significantly increased. Our results suggest PcChitinase 2 may be involved in the innate immune responses of P. clarkii by modulating the toll pathway.


Assuntos
Astacoidea/imunologia , Quitinases/genética , Quitinases/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores Toll-Like/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Astacoidea/enzimologia , Astacoidea/genética , Sequência de Bases , Quitinases/química , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência
12.
Dev Comp Immunol ; 111: 103766, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525034

RESUMO

Cathepsin D belongs to aspartic protease family, produced in the rough endoplasmic reticulum, and then transported to lysosomes, where it participates in various physiological processes. Despite its importance, only a few reports available on the functional role of cathepsin D in crustaceans. Herein, we cloned a cDNA fragment of cathepsin D from the hepatopancreas of the red swamp crayfish, Procambarus clarkii (Pc-cathepsin D) for the first time. It included 1158 base pairs open reading frame, encoding a protein of 385 amino acids. Multiple alignment analysis confirmed the presence of aspartic proteinase active sites and N glycosylation sites. Pc-cathepsin D mRNA expression was high in the gills followed by gut, heart, hepatopancreas of P. clarkii. At different time points post-infection with lipopolysaccharides, peptidoglycan, or polyinosinic polycytidylic acid, Pc-cathepsin D mRNA expression significantly enhanced compared with the control group. Knockdown of the Pc-cathepsin D by double-stranded RNA, strikingly, changed the expression of all the tested P. clarkii immune-associated genes, including Pc-Toll, Pc-lectin, Pc-cactus, Pc-anti-lipopolysaccharide factor, Pc-phospholipase, and Pc-sptzale. Altogether, these results suggest that Pc-cathepsin D is needed to confer innate immunity against microbial pathogens by modulating the expression of crucial transcripts that encode immune-associated genes.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/imunologia , Catepsina D/genética , Hepatopâncreas/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Ácido Aspártico Proteases/genética , Catepsina D/metabolismo , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Filogenia , Poli I-C/imunologia , Alinhamento de Sequência
13.
Dev Comp Immunol ; 111: 103755, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526290

RESUMO

Small heat shock proteins are a molecular chaperone and implicated in various physiological and stress processes in animals. However, the immunological functions of Hsp genes remain to elucidate in the crustaceans, particularly in red swamp crayfish, Procambarus clarkii. Here we report the cloning of heat shock protein 21 from the P. clarkii (hereafter Pc-Hsp21). The open reading frame of Pc-Hsp21 was 555 base pairs, encoding a protein of 184 amino acid residues with an alpha-crystallin family domain. Quantitative real-time PCR (qRT-PCR) analysis revealed a constitutive transcript expression of Pc-Hsp21 in the tested tissue, with the highest in hepatopancreas. The transcript abundance for this gene enhanced in hepatopancreas following immune challenge with the lipopolysaccharide, peptidoglycan, and poly I:C compared to the control group. The depletion of Pc-Hsp21 by double-stranded RNA altered transcript expression profiles of several genes in hepatopancreas, genes involved in the crucial immunological pathways of P. clarkii. These results suggest that Pc-Hsp21 plays an essential biological role in the microbial stress response by modulating the expression of immune-related genes in P. clarkii.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/genética , Proteínas de Choque Térmico/genética , Hepatopâncreas/fisiologia , alfa-Cristalinas/genética , Animais , Proteínas de Artrópodes/metabolismo , Astacoidea/imunologia , Células Cultivadas , Clonagem Molecular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/metabolismo , Imunidade/genética , Lipopolissacarídeos/imunologia , Especificidade de Órgãos , Peptidoglicano/imunologia , Filogenia , Poli I-C/imunologia , Transcriptoma
14.
Sci Rep ; 10(1): 7222, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332824

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 10(1): 7221, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332832

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Fish Shellfish Immunol ; 100: 436-444, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32200070

RESUMO

The cathepsin C, a lysosomal cysteine protease, involves the modulation of immune and inflammatory responses in living organisms. However, the knowledge on cathepsin C in red swamp crayfish (Procambarus clarkii), a freshwater crustacean with economic values, remained unclear. In the present study, we provide identification and molecular characterization of cathepsin C from P. clarkii. (Hereafter Pc-cathepsin C). The Pc-cathepsin C cDNA contained a 1356 bp open reading frame that encoded a protein of 451 amino acid residues. The deduced amino acid sequence comprised of cathepsin C exclusion domain and pept_C1 domain, and also catalytic residues (Cys248, His395 and Asn417). Analysis of the transcriptional patterns of the Pc-cathepsin C gene revealed that it was broadly distributed in various tissues of P. clarkii, and it was more abundant in the hepatopancreas and gut. Following a challenge with viral and bacterial pathogen-associated molecular patterns, the expression of Pc-cathepsin C was strongly enhanced at different time points. The knockdown of Pc-cathepsin C, altered the expression of immune-responsive genes, suggesting its immunoregulatory role in P. clarkii. This study has identified and provided the immunoregulatory function of Pc-cathepsin C, which will contribute to further investigation of the molecular mechanism of cathepsin C in crustaceans.


Assuntos
Proteínas de Artrópodes/imunologia , Astacoidea/imunologia , Infecções Bacterianas/veterinária , Catepsina C/imunologia , Imunidade Inata , Viroses/veterinária , Animais , Astacoidea/microbiologia , Astacoidea/virologia , Bactérias/patogenicidade , Infecções Bacterianas/imunologia , DNA Complementar , Perfilação da Expressão Gênica , Hepatopâncreas/imunologia , Hepatopâncreas/virologia , Lipopolissacarídeos , Filogenia , Poli I-C , Viroses/imunologia , Vírus/patogenicidade
17.
Int J Biol Macromol ; 153: 865-872, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169455

RESUMO

Cathepsins are a group of lysosomal hydrolytic enzymes, broadly distributed in animals, and regulate various physiological processes. However, the immune functions of cathepsins are poorly understood in invertebrates. Therefore, to further provide information about the importance of cathepsins in the innate immune system of crustaceans, cathepsin A from Procambarus clarkii (Pc-cathepsin A) was characterized and its distribution in different tissues was determined. The immunological functions of the Pc-cathepsin A were also evaluated. The Pc-cathepsin A showed high sequence homology to cathepsins of other species, as it contained serine and histidine active sites. Quantitative RT-PCR analysis revealed that the expression of Pc-cathepsin A was highest in the gill, gut, and the hepatopancreas, with variable amounts in the muscle, stomach, heart, and hemocytes. The mRNA expression of Pc-cathepsin A was significantly increased in hepatopancreas challenged with lipopolysaccharide (LPS), peptidoglycan (PGN), and polycytidylic acid (poly I:C). The results of an in vivo analysis revealed that Pc-cathepsin A knockdown by double-stranded RNA in P. clarkii modulated the expression of immune-pathway associated genes in hepatopancreas. Collectively, these results suggest that Pc-cathepsin A modulates innate immune responses by affecting the expression of immune-pathway associated genes, thus revealing a regulatory link between Pc-cathepsin A and immune pathways in P. clarkii, and that Pc-cathepsin A plays an essential biological role in the immune defence against microbial pathogens.


Assuntos
Astacoidea , Catepsina A/farmacologia , Fatores Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Catepsina A/química , Catepsina A/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/genética
18.
Dev Comp Immunol ; 106: 103638, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017956

RESUMO

Small heat shock proteins (shsps) are conserved across invertebrate species. They are implicated in the modulation of various biological processes, such as immune responses, abiotic stress tolerance metamorphosis, and embryonic development. Herein, we identified a heat shock protein 20 from the red swamp crayfish, Procambarus clarkii (named as Pc-Hsp20), and performed in vivo studies to elucidate its physiological functions in the innate immunity. The open reading frame of Pc-Hsp20 was 609 base pair, encoding a protein of 202 amino acid residues with a hsp20/alpha crystallin family domain. Pc-Hsp20 was ubiquitously expressed in various tissues; however, it was highest in the hepatopancreas. The challenge with immune elicitors remarkably enhanced the transcript level of Pc-Hsp20 in the hepatopancreas when compared with the control. Administration of double-stranded RNA could significantly reduce expression of the Pc-Hsp20 mRNAs, and most of the immune-related genes expression enhanced with a variable concentration in the hepatopancreas. Altogether, these results suggest that Pc-Hsp20 may participate in innate immunity against microbial pathogens.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/imunologia , Proteínas de Choque Térmico HSP20/genética , Hepatopâncreas/fisiologia , Infecções/imunologia , Animais , Proteínas de Artrópodes/metabolismo , Clonagem Molecular , Proteínas de Choque Térmico HSP20/metabolismo , Imunidade Inata , Filogenia , Domínios Proteicos/genética , RNA de Cadeia Dupla/imunologia , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma , alfa-Cristalinas/genética
19.
Fish Shellfish Immunol ; 98: 318-323, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31972292

RESUMO

Procambarus clarkii is one of the most important aquatic invertebrates in China and has high commercial value. However, aquaculture has suffered great economic loss due to outbreaks of infectious diseases in P. clarkii. To identify red swamp crayfish related proteins involved in the response to bacterial infection, we analysed immune-related proteins following lipopolysaccharide (LPS) stimulation by quantitative proteomics. The proteome of the hepatopancreas of P. clarkii challenged with LPS and phosphate-buffered saline was analysed to evaluate the immune response. Based on liquid chromatography coupled with tandem mass spectrometry, 16 upregulated and 29 downregulated proteins were identified. A Gene Ontology analysis demonstrated 5 biological process, 11 cellular component, and 6 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the identified proteins were mainly involved in metabolism, phagosome, and ribosome. Real-time quantitative reverse transcription-PCR revealed that eight immune-related genes were upregulated after LPS stimulation compared to the control. Taken together, the data enhance our understanding of the immune response of crayfish to LPS.


Assuntos
Astacoidea/imunologia , Hepatopâncreas/imunologia , Lipopolissacarídeos/imunologia , Animais , Aquicultura , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Astacoidea/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Hepatopâncreas/metabolismo , Proteômica
20.
Fish Shellfish Immunol ; 95: 491-497, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31689551

RESUMO

In this study, we identified a fish-specific Toll-like receptor (TLR) in Pelteobagrus fulvidraco, an economically important freshwater fish in China. This TLR, PfTLR26, was shown to be encoded by a 3084 bp open reading frame (ORF), producing a polypeptide 1027 amino acids in length. The PfTLR26 protein contains a signal peptide, eight leucine-rich repeat (LRR) domains, two LRR_TYP domains in the extracellular region, and a Toll/interleukin (IL)-1 receptor (TIR) domain in the cytoplasmic region, consistent with the characteristic TLR domain architecture. This predicted 117.1 kDa protein was highly homologous to those of other fish, with phylogenetic analysis revealing the closest relation to TLR26 of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that the PfTLR26 gene was expressed in all tissues tested, with the highest expression levels seen in the head kidney and blood, and the lowest seen in muscle. PfTLR26 exhibited significant upregulation in liver, spleen, head kidney, and blood at different time points following challenge with the common TLR agonists lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid (Poly I:C). Taken together, these results suggest that PfTLR26 may be an important component of the P. fulvidraco innate immune system, participating in the transduction of TLR signaling under pathogen stimulation.


Assuntos
Peixes-Gato/imunologia , Imunidade Inata , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Animais , Peixes-Gato/genética , Clonagem Molecular , Doenças dos Peixes/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA