RESUMO
Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.
Assuntos
Saccharum , Silício , Grão Comestível , Carbono , Carboidratos da Dieta , Fósforo , Solo , FertilizaçãoRESUMO
This research aimed to study the effects of the nanosilica supply on Si absorption and the physiological and nutritional aspects of beet plants with N and P deficiencies cultivated in a nutrient solution. Two experiments were performed with treatments arranged in a 2 × 2 factorial scheme in randomized blocks with five replications. The first experiment was carried out on plants under a N deficiency and complete (complete solution with all nutrients), combined with the absence of Si (0 mmol L-1) and the presence of Si (2.0 mmol L-1). In the other experiment, the plants were cultivated in a nutrient solution with a P deficiency and complete, combined with the absence (0 mmol L-1) and the presence of Si (2.0 mmol L-1). The beet crop was sensitive to the N and P deficiencies because they sustained important physiological damage. However, using nanosilica via fertigation could reverse the damage. Using nanotechnology from nanosilica constituted a sustainable strategy to mitigate the damage due to a deficiency in the beet crop of the two most limiting nutrients by optimizing the physiological processes, nutritional efficiency, and growth of the plants without environmental risks. The future perspective is the feasibility of nanotechnology for food security.
RESUMO
BACKGROUND: Boron (B) and silicon (Si) are fundamental for brassica nutrition, and in some cases, they have potential as an insecticide. Plutella xylostella (L.) (Lepidoptera: Plutellidae), one of the most economically important agricultural pests, is difficult to control due to the resistance to insecticides and the absence of alternative control methods. RESULTS: Cauliflower leaves sprayed with Si and B showed a higher concentration of the beneficial element and micronutrient, respectively. When evaluating the firmness of the cauliflower leaves, it was found that the plants with leaf sprayings of Si and B did not differ statistically from each other. However, they showed an increase in firmness, in relation to the plants of the control treatment. Leaf spraying of Si and B on cauliflower did not influence the number of eggs/female. The attractiveness index showed that both Si and B applications stimulated the presence of second instar larvae, being more stimulating in relation to the control treatment. However, the use of Si and B in isolation showed a positive result, since it caused high mortality in diamondback moth larvae compared to the control treatment. CONCLUSION: The application of both foliar fertilizers positively affects the attractiveness index of the larvae, being attractive; however, both Si and B caused high mortality (~80%). The results showed that Si and B have the potential to control P. xylostella and serve as a basis for alternative pest management in brassica crops. © 2022 Society of Chemical Industry.
Assuntos
Brassica , Inseticidas , Mariposas , Animais , Silício , Boro , LarvaRESUMO
Multiple aspects of the physiological and nutritional mechanisms involved with silicon (Si) absorption by quinoa plants remain poorly investigated, as well as the best way of supplying this element to crops. Thus, this study aimed at evaluating whether the application of Si increases its uptake by quinoa plants and consequently the use efficiency of N and P, as well as the levels of phenolic compounds in the leaves, crop productivity and the biofortification of grains. For this purpose, the concentration of 3 mmol L-1 of Si was tested, according to the following procedures: foliar application (F), root application in the nutrient solution (R), combined Si application via nutrient solution and foliar spraying (F + R), and no Si application (0). The provision of Si through the leaves and roots promoted the highest uptake of the element by the plant, which resulted in an increased use efficiency of N and P. Consequently, such a higher uptake favored the productivity of grains. The optimal adoption of the application of Si through leaves and roots promoted the highest Si concentration and ascorbic acid content in quinoa grains.
Assuntos
Chenopodium quinoa , Silício , Biofortificação , Grão Comestível , Folhas de PlantaRESUMO
Cowpea [Vigna unguiculata (L.) Walp] is cultivated in tropical and subtropical regions worldwide, but its production is usually limited by boron (B) deficiency, which can be mitigated by applying B via foliar spraying. In plants with nutrient mobility, the residual effect of foliar fertilization increases, which might improve its efficiency. An experiment was carried out to evaluate the concentration and mobility of the B isotopic tracer (10B) in different organs of cowpea plants, after the application of this micronutrient in the growing media and also to leaves. Treatments were designed based on B fertilization as follows: without B in the growth media, with 10B applied via foliar spraying (10B-L), with B in the growth media (substrate) and 10B via foliar spraying (10B-L + B-S), and with 10B in the growth media (substrate) without foliar spraying (10B-S), and a control without fertilization. A redistribution of 10B was observed in new leaves when the element was supplied via foliar spraying, resulting in greater leaf area, dry mass and dry matter production of aerial parts, and also the whole plant. 10Boron was redistributed when applied via foliar spraying in cowpea plants, regardless of the plant's nutritional status, which in turn might increase internal B cycling.
RESUMO
Recognizably, silicon has a beneficial effect on plant growth and productivity. In this respect, it is also known that the C, N and, P stoichiometric ratios and nutrient conversion efficiency allow identifying the interactions between elements while helping to understand the role Si plays in plant growth. This study aims to investigate whether increasing Si concentrations (0, 1, 2, and 3 mmol L-1) supplied in the nutrient solution is uptaken by quinoa, modifies the C:N:P stoichiometry while increasing nutritional efficiency and crop productivity as well. Our results revealed that the Si supply by promoting a decline in the C levels, associated with greater uptake of N and P, especially decreased the C:N and C:P ratios, favoring the C metabolism efficiency, and modulated the N and P use efficiency for biomass accumulation. This improved nutritional performance and greater use efficiency of C directly favored quinoa productivity. The future perspective is to encourage new field studies with this species to adjust silicon fertilization management to different soils aiming at enhancing quinoa productivity on a sustainable basis.
RESUMO
Calcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutrient solution reduces, in fact, the calcium deficiency effects on cabbage plants. In a greenhouse, cabbage plants were grown using nutrient solutions with Ca sufficiency and Ca deficiency (5 mM) without and with added silicon (2.5 mM), arranged as a 2 × 2 factorial in randomized blocks, with five replications. At 91 days after transplanting, the plants were harvested for biological evaluations. In the treatment without added Si, Ca deficiency promoted oxidative stress, low antioxidant content, decreased dry matter, and lower quality leaf. On the other hand, added Si attenuated Ca deficiency in cabbage by decreasing cell extravasation while increasing both ascorbic acid content and fresh and dry matter, providing firmer leaves due to diminished leaf water loss after harvesting. We highlighted the agronomic importance of Si added to the nutrient solution, especially in crops at risk of Ca deficiency.