Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anat ; 236(5): 772-797, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32023660

RESUMO

Tetrapod limbs morphology is a reliable proxy of locomotor capacities. Beyond this, other aspects of life habits, such as predation abilities, can also be relevant to determine main morphofunctional appendicular properties, which ultimately reflect a compromise between different factors of the biological role. Dromaeosauridae is a dinosaur clade belonging to Theropoda, a group of bipedal predators. Dromaeosaurids represent an interesting study case, in which the hindlimbs have been proposed to be involved in both locomotion and predation activity. A peculiar feature characterizing all dromaeosaurids is a modified second pedal digit, which is typically related to predation. This theropod group is closely related to birds and diversified during the Cretaceous Period, mainly in the Northern Hemisphere (Laurasia). However, a subclade of dromaeosaurids, the Unenlagiinae, was recently recognized for Gondwana. Nevertheless, there are morphological differences between derived Laurasian dromaeosaurids (eudromaeosaurs) and unenlagiines. Such differences are observed in the proportions between hindlimb bones and in the presence of a subarctometatarsalian condition in unenlagiines, which is mainly characterized by a proximally constricted metatarsal III. To evaluate the function of these divergent morphologies, we conducted morphometric analyses and comparisons of qualitative morphological aspects, encompassing unenlagiines, other dromaeosaurids, as well as taxa from other theropod groups, including extant birds. The former approach consisted of two phylogenetic principal component analyses, one based on the main measurements of the hindlimb, and the other focused on the lengths of the pedal phalanges. The first analysis drew the unenlagiines close to taxa with long tibiae, as well as long and slender metatarsi. Instead, eudromaeosaurs are closer to taxa with shorter tibiae, and shorter and wider metatarsi. The second analysis showed that eudromaeosaurs and unenlagiines have similar phalangeal proportions, including the elongation of distal phalanges. However, the shorter second phalanx of the pedal digit II of eudromaeosaurs could have increased the force generated by this digit, which was the main predatory tool of the autopodium. This, together with a shorter and wider metatarsus, and a marked hinge-like morphology of the articular surfaces of metatarsals and phalanges, possibly allowed eudromaeosaurs to exert a great gripping strength and hunt large prey. Conversely, the longer and slender subarctometatarsus, and less well-marked hinge joints of unenlagiines possibly gave them greater cursorial capacities. Additionally, the longer second phalanx of digit II allowed unenlagiines fast movements of this digit to hunt smaller and elusive prey. Thus, the distinctive morphological evolutionary pathways of these two dromaeosaurid clades seem to have been influenced by the particular locomotor and predatory specializations that characterized each of these lineages.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Locomoção/fisiologia , Comportamento Predatório/fisiologia , Animais , Dinossauros/anatomia & histologia , Fósseis , Filogenia
2.
Sci Rep ; 10(1): 1099, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980647

RESUMO

We present a new locality with at least 880 vertebrate tracks found at the top of a limestone bed from the lower Miocene Tudela Formation (Spain). The trampled surface was formed by artiodactyls that crossed a muddy carbonate accumulated under the influence of water level variations in a palustrine environment. The tracks reflect different types of morphological preservation. The well-preserved tracks have tetradactyl digit impressions caused by both manus and pes, and are the type series of a new artiodactyl ichnotaxon, Fustinianapodus arriazui ichnogen. nov. and ichnosp. nov. The rest of the tracks, which are not as well preserved, are didactyl and were classified as undetermined artiodactyl tracks. According to their preservation, morphology, size, arrangement and orientation, we propose that this tracksite is the product of a social behaviour, particularly gregariousness, of a multi-age group of artiodactyls ~19 Ma ago. The morphologic and palaeoecologic data presented here suggest that the trackmakers were a group of anthracotheres with a livelihood similar to current hippos. They crossed, periodically, a fresh water palustrine area along some preferential pathways (trails).


Assuntos
Alcaloides , Artiodáctilos/psicologia , Comportamento Animal , Paleontologia , Comportamento Social , Áreas Alagadas , Animais , Artiodáctilos/classificação , Carbonato de Cálcio , Carbonatos , Ecossistema , Fósseis , Casco e Garras , Espanha
3.
PeerJ ; 6: e5358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123702

RESUMO

The Los Menucos locality in Patagonia, Argentina, bears a well-known ichnofauna mostly documented by small therapsid footprints. Within this ichnofauna, large pentadactyl footprints are also represented but to date were relatively underinvestigated. These footprints are here analyzed and discussed based on palaeobiological indications (i.e., trackmaker identification). High resolution digital photogrammetry method was performed to achieve a more objective representation of footprint three-dimensional morphologies. The footprints under study are compared with Pentasauropus from the Upper Triassic lower Elliot Formation (Stormberg Group) of the Karoo Basin (Lesotho, southern Africa). Some track features suggest a therapsid-grade synapsid as the potential trackmaker, to be sought among anomodont dicynodonts (probably Kannemeyeriiformes). While the interpretation of limb posture in the producer of Pentasauropus tracks from the Los Menucos locality agrees with those described from the dicynodont body fossil record, the autopodial posture does not completely agree. The relative distance between the impression of the digital (ungual) bases and the distal edge of the pad trace characterizing the studied tracks likely indicates a subunguligrade foot posture (i.e., standing on the last and penultimate phalanges) in static stance, but plantiportal (i.e., the whole foot skeleton and related soft tissues are weight-bearing) during the dynamics of locomotion. The reconstructed posture might have implied an arched configuration of the articulated metapodials and at least of the proximal phalanges, as well as little movement capabilities of the metapodials. Usually, a subunguligrade-plantiportal autopod has been described for gigantic animals (over six hundreds kilograms of body weight) to obtain an efficient management of body weight. Nevertheless, this kind of autopod is described here for large but not gigantic animals, as the putative trackmakers of Pentasauropus were. This attribution implies that such an autopodial structure was promoted independently from the body size in the putative trackmakers. From an evolutionary point of view, subunguligrade-plantiportal autopods not necessarily must be related with an increase in body size, but rather the increase in body size requires a subunguligrade or unguligrade, plantiportal foot. Chronostratigraphically, Pentasauropus was reported from Upper Triassic deposits of South Africa and United States, and from late Middle Triassic and Upper Triassic deposits of Argentina. Based on the stratigraphic distribution of the ichnogenus currently accepted, a Late Triassic age is here proposed for the Pentasauropus-bearing levels of the Los Menucos Group.

4.
PeerJ ; 3: e1044, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26137425

RESUMO

Triassic vertebrate tracks are known from the beginning of the 19th century and have a worldwide distribution. Several Triassic track ichnoassemblages and ichnotaxa have a restricted stratigraphic range and are useful in biochronology and biostratigraphy. The record of Triassic tracks in the Iberian Peninsula has gone almost unnoticed although more than 25 localities have been described since 1897. In one of these localities, the naturalist Longinos Navás described the ichnotaxon Chirotherium ibericus in 1906.The vertebrate tracks are in two sandy slabs from the Anisian (Middle Triassic) of the Moncayo massif (Zaragoza, Spain). In a recent revision, new, previously undescribed vertebrate tracks have been identified. The tracks considered to be C. ibericus as well as other tracks with the same morphology from both slabs have been classified as Chirotherium barthii. The rest of the tracks have been assigned to Chirotheriidae indet., Rhynchosauroides isp. and undetermined material. This new identification of C. barthii at the Navás site adds new data to the Iberian record of this ichnotaxon, which is characterized by the small size of the tracks when compared with the main occurrences of this ichnotaxon elsewhere. As at the Navás tracksite, the Anisian C. barthii-Rhynchosauroides ichnoassemblage has been found in other coeval localities in Iberia and worldwide. This ichnoassemblage belongs to the upper Olenekian-lower Anisian interval according to previous biochronological proposals. Analysis of the Triassic Iberian record of tetrapod tracks is uneven in terms of abundance over time. From the earliest Triassic to the latest Lower Triassic the record is very scarce, with Rhynchosauroides being the only known ichnotaxon. Rhynchosauroides covers a wide temporal range and gives poor information for biochronology. The record from the uppermost Lower Triassic to the Middle Triassic is abundant. The highest ichnodiversity has been reported for the Anisian with an assemblage composed of Dicynodontipus, Procolophonichnium, Rhynchosauroides, Rotodactylus, Chirotherium, Isochirotherium, Coelurosaurichnus and Paratrisauropus. The Iberian track record from the Anisian is coherent with the global biochronology proposed for Triassic tetrapod tracks. Nevertheless, the scarcity of track occurrences during the late Olenekian and Ladinian prevents analysis of the corresponding biochrons. Finally, although the Iberian record for the Upper Triassic is not abundant, the presence of Eubrontes, Anchisauripus and probably Brachychirotherium is coherent with the global track biochronology as well. Thus, the Triassic track record in the Iberian Peninsula matches the expected record for this age on the basis of a global biochronological approach, supporting the idea that vertebrate Triassic tracks are a useful tool in biochronology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA