Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(42): 12424-12432, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34649430

RESUMO

Many natural compounds can activate the plant immunity, and for this reason, they have attracted special interest in crop disease management. Previously, we isolated from strawberry leaves an ellagitannin (HeT), which elicits plant defense responses. In this research, we investigated bioactive compounds from field-collected strawberry leaves capable of inducing defense responses in Arabidopsis thaliana against a bacterial pathogen. Methanolic extracts of strawberry leaves sampled at different months were obtained and compared. The highest content of total soluble phenolic compounds was found in the methanolic extracts of leaves sampled in December (DME). The defense response induced in A. thaliana by DME was attributed to two ellagitannins, the HeT and galloyl-HHDP-glucose. Both compounds exhibited phytoprotective effects against Pseudomonas viridiflava and induced the expression of PDF1.2 and PR1 genes. These results provide an economic value to strawberry leaves, normally discarded at the end of the harvest stage of the crop, as a raw material for plant health enhancer bioinputs.


Assuntos
Fragaria , Fragaria/genética , Taninos Hidrolisáveis , Folhas de Planta , Pseudomonas , Estações do Ano
3.
Planta ; 250(4): 1131-1145, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31172342

RESUMO

MAIN CONCLUSION: Colletotrichum acutatum M11 produces a diffusible compound that suppresses the biochemical, physiological, molecular and anatomical events associated with the defence response induced by the plant defence elicitor AsES. The fungal pathogen Colletotrichum acutatum, the causal agent of anthracnose disease, causes important economical losses in strawberry crop worldwide and synthetic agrochemicals are used to control it. In this context, the control of the disease using bioproducts is gaining reputation as an alternative of those toxic and pollutant agrochemicals. However, the success of the strategies using bioproducts can be seriously jeopardized in the presence of biological agents exerting a defence suppression effect. In this report, we show that the response defence induced in plant by the elicitor AsES from the fungus Acremonium strictum can be suppressed by a diffusible compound produced by isolate M11 of C. acutatum. Results revealed that strawberry plants treated with conidia of the isolated M11 or the culture supernatant of the isolate M11 suppress: ROS accumulation (e.g., H2O2, O2·- and NO), cell wall reinforcement (e.g., lignin and callose), and the up-regulation of defence-related genes (e.g., FaPR1, FaCHI23, FaPDF1.2, FaCAT, FaCDPK, FaCML39) induced by the elicitor AsES. Additionally, we show that the defence suppressing effect causes a systemic sensitization of plants. Results presented here highlights the necessity to make an integral study of the microbiome present in soils and plant biosphere before applying defence activation bioproducts to control crop diseases.


Assuntos
Colletotrichum/patogenicidade , Resistência à Doença , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Parede Celular/metabolismo , Colletotrichum/química , Fragaria/genética , Fragaria/imunologia , Fragaria/microbiologia , Glucanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Doenças das Plantas/imunologia
4.
Front Plant Sci ; 9: 844, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087681

RESUMO

In this work, we present a novel biostimulant for sustainable crop disease management, PSP1, based on the plant defense-elicitor AsES, an extracellular protease produced by the strawberry fungal pathogen Acremonium strictum. Fungal fermentation conditions and downstream processing were determined to maximize extracellular protein production, product stability and a high plant defense-eliciting activity, as monitored by anthracnose resistance in supernatant-treated strawberry plants subsequently infected with a virulent strain of Colletotrichum acutatum. Fermentation batches were shown to reduce anthracnose development by 30-60% as compared to infected non-treated plants. Product formulation was shown to be stable for 6 months when stored at temperatures up to 45°C and toxicological tests showed that PSP1 was harmless to beneficial organisms and non-toxic to mammalian species at concentrations 50 times higher than those used in plant experiments. Furthermore, disease protection studies using dilutions of PSP1 indicated that there is a minimum threshold protease activity needed to induce pathogen defense in strawberry and that this induction effect is dose-independent. A significant characteristic of PSP1 is its broad-range protection against different diseases in various crop species. In soybean, PSP1 reduced the symptomatology by 70% of Corynespora cassiicola, etiological agent of the target spot. This protection effect was similar to the commercial inducer BION 500 WG based on BTH, and both products were shown to induce an oxidative burst and up-regulated PR1-gene expression in soybean. Furthermore, a double PSP1-treatment on greenhouse-grown sugarcane plants provided protection against bacterial red stripe disease caused by Acidovorax avenae and a double foliar application of PSP1 on field-grown wheat plants significantly increased resistance against Fusarium graminearum, causal agent of head blight disease, manifested mainly in an increased seed germination rate. In summary, these disease protection studies demonstrated an effective control against both bacterial and fungal pathogens in both monocot and dicot crop species, which together with its low production cost, effectiveness at low concentrations, long shelf-life, tolerance to high temperatures, harmlessness to non-target organisms and simple handling and application, make PSP1 a very promising candidate for effective and sustainable disease management in many crop species.

5.
J Biol Chem ; 288(20): 14098-14113, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23530047

RESUMO

In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.


Assuntos
Acremonium/metabolismo , Fragaria/microbiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Subtilisina/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sequência de Bases , Bioensaio , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/metabolismo , Resistência à Doença , Eletroforese em Gel de Poliacrilamida , Fragaria/imunologia , Espectrometria de Massas , Dados de Sequência Molecular , Imunidade Vegetal , Espécies Reativas de Oxigênio , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Subtilisinas/metabolismo , Tripsina , Ultrafiltração
6.
Am J Bot ; 98(12): 2077-83, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22130272

RESUMO

PREMISE OF THE STUDY: Duchesnea indica is a wild strawberry-like species that has red fruits. In a recent survey in the highlands of Tucumán (Argentina), a plant of D. indica with white fruits was discovered. The aim of this study was to investigate whether the white-fruited character was due to a phenotypic or genotypic change. The stability and heritability of the character and the expression of genes involved in anthocyanins synthesis were studied and compared with red-fruited genotypes. This study contributes to understanding the molecular basis of some factors involved in fruit pigmentation, a horticulturally and taxonomically important trait. METHODS: Stability and heritability of the white-fruited character were evaluated in plants obtained by asexual propagation or by sexual crosses between the white- and red-fruited genotypes. Asexual multiplications were carried out by stolon rooting and sexual multiplications by germination of achenes obtained from crosses. The expression level of the genes involved in the synthesis and regulation of the anthocyanins pathway (CHS, F3H, DFR, ANS, and MYB10) were evaluated by RT-PCR using specific primers. KEY RESULTS: Plants with the white-fruited character always yielded white-fruited progeny when propagated asexually, whereas in sexually propagated plants fruit color depended on the mother. Red-fruited mothers yielded red-fruited progeny, and white-fruited mothers yielded fruits ranging from dark pink to white. Molecular analysis suggested that the white-fruited character was due to the low expression of the ANS gene. CONCLUSIONS: Results obtained indicate that the white-fruited character was stable. Mother progenitors exert a strong influence on the expression of the white-fruited character. The white-fruited phenotype is due to the impairment or downregulation of the ANS gene.


Assuntos
Antocianinas/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Pigmentação/genética , Proteínas de Plantas/genética , Rosaceae/genética , Antocianinas/biossíntese , Cruzamentos Genéticos , Flores/anatomia & histologia , Frutas/anatomia & histologia , Genótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Rosaceae/anatomia & histologia , Especificidade da Espécie
7.
Arch Microbiol ; 193(4): 275-86, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21234749

RESUMO

Anthracnose, caused by the fungus Colletotrichum acutatum is one of the most important diseases in strawberry crop. Due to environmental pollution and resistance produced by chemical fungicides, nowadays biological control is considered a good alternative for crop protection. Among biocontrol agents, there are plant growth-promoting bacteria, such as members of the genus Azospirillum. In this work, we demonstrate that under iron limiting conditions different strains of A. brasilense produce siderophores, exhibiting different yields and rates of production according to their origin. Chemical assays revealed that strains REC2 and REC3 secrete catechol type siderophores, including salicylic acid, detected by thin layer chromatography coupled with fluorescence spectroscopy and gas chromatography-mass spectrometry analysis. Siderophores produced by them showed in vitro antifungal activity against C. acutatum M11. Furthermore, this latter coincided with results obtained from phytopathological tests performed in planta, where a reduction of anthracnose symptoms on strawberry plants previously inoculated with A. brasilense was observed. These outcomes suggest that some strains of A. brasilense could act as biocontrol agent preventing anthracnose disease in strawberry.


Assuntos
Azospirillum brasilense/metabolismo , Colletotrichum/patogenicidade , Fragaria/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/farmacologia , Antifúngicos/farmacologia , Cromatografia em Camada Fina , Colletotrichum/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Doenças das Plantas/microbiologia , Espectrometria de Fluorescência
8.
Biochemistry ; 49(35): 7652-8, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20666428

RESUMO

The stability of proteins involves a critical balance of interactions of different orders of magnitude. In this work, we present experimental evidence of an increased thermal stability of galectin-1, a multifunctional beta-galactoside-binding protein, upon binding to the disaccharide lactose. Analysis of structural changes occurring upon binding of lectin to its specific glycans and thermal denaturation of the protein and the complex were analyzed by circular dichroism. On the other hand, we studied dimerization as another factor that may induce structural and thermal stability changes. The results were then complemented with molecular dynamics simulations followed by a detailed computation of thermodynamic properties, including the internal energy, solvation free energy, and conformational entropy. In addition, an energetic profile of the binding and dimerization processes is also presented. Whereas binding and cross-linking of lactose do not alter galectin-1 structure, this interaction leads to substantial changes in the flexibility and internal energy of the protein which confers increased thermal stability to this endogenous lectin. Given that an improved understanding of the physicochemical properties of galectin-glycan lattices may contribute to the dissection of their biological functions and prediction of their therapeutic applications, our study suggests that galectin binding to specific disaccharide ligands may increase the thermal stability of this glycan-binding protein, an effect that could influence its critical biological functions.


Assuntos
Galactosídeos/química , Galactosídeos/metabolismo , Galectina 1/química , Sítios de Ligação , Dimerização , Galectina 1/metabolismo , Humanos , Ligantes , Modelos Moleculares , Dobramento de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA