Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Am J Transl Res ; 14(9): 6011-6028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247292

RESUMO

Hidden collective organization of cancer cells can partially or completely return to embryoid genotype-phenotype with the plasticity to transform their morphology on cell embryoblast-like memory entities by expression of dormant genes that arise from embryogenesis. After hundreds of driver mutations, cancer cells gain new abilities or attributes and recapitulate early stages of embryogenesis. Our findings document how malignant tissues reactivated ancestral storage memory and elaborate inside tumor glands spiral-pyramidal-fractal chiral crystals (Tc) as geometric attractor proteins and biomimicry the primitive cellular blastocyst embryoblast fluid-filled cavity. The resultant evolutionary embryoblast-like entity has higher survivability and spatial cephalic-caudal growth organization with pluripotentiality that carry the correct DNA instructions to repair, and regenerate. The isolation and manipulation of these order structures can guide and control the regenerative pathway mechanism in human tumors as follows: modify and reprogram the phenotype of the tumor where these entities are generated, establish a reverse primordial microscopic mold to use the swirlonic collective behavior of cellular building blocks to regenerate injured tissues, convert cancer cells to a normal phenotype through regeneration using the organizational level and scale properties of reverse genetic guidance, global control of mitotic activity and morphogenetic movements avoiding their spread and metastasis, determining a better life prognosis for patients who incubate these entities in their tumors compared to those who do not express them. An emergent self-repair order structure, biological template can develop targeted therapeutic alternatives not only in cancer but also in treatment of autoimmune, viral diseases, and in regenerative medicine and rejuvenation.

2.
Cancer Manag Res ; 4: 9-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22346365

RESUMO

Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately linked with DNA repair. Further genotype studies must be carried out to determine whether the subproducts of these structures can be used in novel strategies to treat cancer.

3.
Cancer Manag Res ; 3: 143-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625398

RESUMO

We have documented self-assembled geometric triangular chiral crystal complexes (GTCHC) and a framework of collagen vascular invariant geometric attractors in cancer tissues. This article shows how this system evolves in time. These structures are incorporated together and evolve in different ways. When the geometric core is stable, and the tissue architecture collapses, fragmented components emerge, which reveal a hidden interior identifying how each molecule is reassembled into the original mold, using one common connection, ie, a fractal self-similarity that guided the system from the beginning. GTCHC complexes generate ejected crystal comet tail effects and produce strange helicity states that arise in the form of spin domain interactions. As the crystal growth vibration stage progresses, biofractal echo images converge in a master-built construction of embryoid bodies with enolase-selective immunopositivity in relation to clusters of triangular chiral cell organization. In our electro-optic collision model, we were able to predict and replicate all the characteristics of this complex geometry that connects a physical phenomenon with the signal patterns that generate biologic chaos. Intrinsically, fractal geometry makes spatial correction errors embrace the chaotic system in a way that permits new structures to emerge, and as a result, an ordered self-assembly of embryoid bodies with neural differentiation at the final stage of cancer development is a predictable process. We hope that further investigation of these structures will lead not only to a new way of thinking about physics and biology, but also to a rewarding area in cancer research.

4.
PLoS One ; 2(12): e1282, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18074008

RESUMO

The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must be carried out to reproduce, manipulate and amplify their activity and probably use them as a base to develop new therapeutic strategies in cancer.


Assuntos
Neoplasias/patologia , Animais , Humanos , Estrutura Molecular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA