Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(12)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558357

RESUMO

This paper presents an approach for impedance-based sensor monitoring of dressing tool condition in grinding by using the electromechanical impedance (EMI) technique. This method was introduced in Part 1 of this work and the purpose of this paper (Part 2) is to achieve an optimal selection of the excitation frequency band based on multi-layer neural networks (MLNN) and k-nearest neighbor classifier (k-NN). The proposed approach was validated on the basis of dressing tool condition information obtained from the monitoring of experimental dressing tests with two industrial stationary single-point dressing tools. Moreover, representative damage indices for diverse damage cases, obtained from impedance signatures at different frequency bands, were taken into account for MLNN data processing. The intelligent system was able to select the most damage-sensitive features based on optimal frequency band. The best models showed a general overall error lower than 2%, thus robustly contributing to the efficient automation of grinding and dressing operations. The promising results of this study foster the EMI-based sensor monitoring approach to fault diagnosis in dressing operations and its effective implementation for industrial grinding process automation.

2.
Sensors (Basel) ; 18(12)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558373

RESUMO

Low-cost piezoelectric lead zirconate titanate (PZT) diaphragm transducers have attracted increasing attention as effective sensing devices, based on the electromechanical impedance (EMI) principle, for applications in many engineering sectors. Due to the considerable potential of PZT diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This paper aims at assessing the structural changes caused by wear in single-point dressers during their lifetime, in order to ensure the reliable monitoring of the tool condition during dressing operations. Experimental dressing tests were conducted on aluminum oxide grinding wheels, which are highly relevant for industrial grinding processes. From the results obtained, it was verified that the dresser tip diamond material and the position of the PZT diaphragm transducer mounted on the dressing tool holder have a significant effect on the sensitivity of damage detection. This paper contributes to the realization of an effective monitoring system of dressing operations capable to avoid catastrophic tool failures as the proposed sensing approach can identify different stages of the dressing tool lifetime based on representative damage indices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA