Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Biochem Pharmacol ; 224: 116245, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38685281

RESUMO

Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.


Assuntos
Tecido Adiposo , Artrite Experimental , Macrófagos , Camundongos Endogâmicos C57BL , Resistina , Animais , Resistina/metabolismo , Resistina/genética , Humanos , Tecido Adiposo/metabolismo , Camundongos , Macrófagos/metabolismo , Artrite Experimental/metabolismo , Camundongos Knockout , Masculino
2.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990806

RESUMO

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Assuntos
Interleucina-33 , Sepse , Humanos , Camundongos , Animais , Criança , Imunidade Inata , Linfócitos/metabolismo , Linfócitos/patologia , Terapia de Imunossupressão
3.
iScience ; 26(11): 108134, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867943

RESUMO

AIM2 is an interferon-inducible HIN-200 protein family member and is well-documented for its roles in innate immune responses as a DNA sensor. Recent studies have highlighted AIM2's function on regulatory T cells (Treg) and follicular T cells (Tfh). However, its involvement in Th17 cell differentiation remains unclear. This study reveals that AIM2 promotes Th17 cell differentiation. AIM2 deficiency decreases IL-17A production and downregulates key Th17 associated proteins (RORγt, IL-1R1, IL-23R). AIM2 is located in the nucleus of Th17 cells, where it interacts with RORγt, enhancing its binding to the Il17a promoter. The absence of AIM2 hinders naive CD4 T cells from differentiating into functional Th17 cells and from inducing colitis in Rag1-/- mice. This study uncovers AIM2's role as a regulator of Th17 cell transcriptional programming, highlighting its potential as a therapeutic target for Th17 cell-mediated inflammatory diseases.

4.
J Biol Chem ; 299(12): 105379, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871745

RESUMO

Osteoclasts are specialized cells responsible for bone resorption, a highly energy-demanding process. Focus on osteoclast metabolism could be a key for the treatment of osteolytic diseases including osteoporosis. In this context, AMP-activated protein kinase α1 (AMPKα1), an energy sensor highly expressed in osteoclasts, participates in the metabolic reconfiguration during osteoclast differentiation and activation. This study aimed to elucidate the role of AMPKα1 during osteoclastogenesis in vitro and its impact in bone loss in vivo. Using LysMcre/0AMPK⍺1f/f animals and LysMcre/0 as control, we evaluated how AMPKα1 interferes with osteoclastogenesis and bone resorption activity in vitro. We found that AMPKα1 is highly expressed in the early stages of osteoclastogenesis. Genetic deletion of AMPKα1 leads to increased gene expression of osteoclast differentiation and fusion markers. In addition, LysMcre/0AMPK⍺1f/f mice had an increased number and size of differentiated osteoclast. Accordingly, AMPKα1 negatively regulates bone resorption in vitro, as evidenced by the area of bone resorption in LysMcre/0AMPK⍺1f/f osteoclasts. Our data further demonstrated that AMPKα1 regulates mitochondrial fusion and fission markers upregulating Mfn2 and downregulating DRP1 (dynamics-related protein 1) and that Ctskcre/0AMPK⍺1f/f osteoclasts lead to an increase in the number of mitochondria in AMPK⍺1-deficient osteoclast. In our in vivo study, femurs from Ctskcre/0AMPK⍺1f/f animals exhibited bone loss associated with the increased number of osteoclasts, and there was no difference between Sham and ovariectomized group. Our data suggest that AMPKα1 acts as a negative regulator of osteoclastogenesis, and the depletion of AMPKα1 in osteoclast leads to a bone loss state similar to that observed after ovariectomy.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Feminino , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Osteogênese , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/metabolismo
5.
Sci Rep ; 13(1): 13599, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604833

RESUMO

The TIGIT+FOXP3+Treg subset (TIGIT+Tregs) exerts robust suppressive activity on cellular immunity and predisposes septic individuals to opportunistic infection. We hypothesized that TIGIT+Tregs could play an important role in intensifying the COVID-19 severity and hampering the defense against nosocomial infections during hospitalization. Herein we aimed to verify the association between the levels of the TIGIT+Tregs with the mechanical ventilation requirement, fatal outcome, and bacteremia during hospitalization. TIGIT+Tregs were immunophenotyped by flow cytometry from the peripheral blood of 72 unvaccinated hospitalized COVID-19 patients at admission from May 29th to August 6th, 2020. The patients were stratified during hospitalization according to their mechanical ventilation requirement and fatal outcome. COVID-19 resulted in a high prevalence of the TIGIT+Tregs at admission, which progressively increased in patients with mechanical ventilation needs and fatal outcomes. The prevalence of TIGIT+Tregs positively correlated with poor pulmonary function and higher plasma levels of LDH, HMGB1, FGL2, and TNF. The non-survivors presented higher plasma levels of IL-33, HMGB1, FGL2, IL-10, IL-6, and 5.54 times more bacteremia than survivors. Conclusions: The expansion of the TIGIT+Tregs in COVID-19 patients was associated with inflammation, lung dysfunction, bacteremia, and fatal outcome.


Assuntos
Bacteriemia , COVID-19 , Infecção Hospitalar , Proteína HMGB1 , Humanos , Respiração Artificial , Linfócitos T Reguladores , Receptores Imunológicos , Fibrinogênio
6.
Elife ; 122023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254842

RESUMO

Resident macrophages are distributed across all tissues and are highly heterogeneous due to adaptation to different tissue-specific environments. The resident macrophages of the sensory ganglia (sensory neuron-associated macrophages, sNAMs) are in close contact with the cell body of primary sensory neurons and might play physiological and pathophysiological roles. After peripheral nerve injury, there is an increase in the population of macrophages in the sensory ganglia, which have been implicated in different conditions, including neuropathic pain development. However, it is still under debate whether macrophage accumulation in the sensory ganglia after peripheral nerve injury is due to the local proliferation of resident macrophages or a result of blood monocyte infiltration. Here, we confirmed that the number of macrophages increased in the sensory ganglia after the spared nerve injury (SNI) model in mice. Using different approaches, we found that the increase in the number of macrophages in the sensory ganglia after SNI is a consequence of the proliferation of resident CX3CR1+ macrophages, which participate in the development of neuropathic pain, but not due to infiltration of peripheral blood monocytes. These proliferating macrophages are the source of pro-inflammatory cytokines such as TNF and IL-1b. In addition, we found that CX3CR1 signaling is involved in the sNAMs proliferation and neuropathic pain development after peripheral nerve injury. In summary, these results indicated that peripheral nerve injury leads to sNAMs proliferation in the sensory ganglia in a CX3CR1-dependent manner accounting for neuropathic pain development. In conclusion, sNAMs proliferation could be modulated to change pathophysiological conditions such as chronic neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Traumatismos dos Nervos Periféricos/complicações , Gânglios Espinais , Macrófagos , Gânglios Sensitivos , Células Receptoras Sensoriais , Proliferação de Células , Hiperalgesia
7.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186819

RESUMO

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Assuntos
COVID-19 , Hiperglicemia , Humanos , COVID-19/complicações , SARS-CoV-2 , Gluconeogênese , Glicemia , Estudos Retrospectivos , Hepatócitos , Hiperglicemia/complicações , Glucose
8.
Respir Res ; 24(1): 66, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864506

RESUMO

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Armadilhas Extracelulares , Animais , Humanos , Camundongos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Neutrófilos , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/uso terapêutico
9.
J Invest Dermatol ; 143(9): 1678-1688.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36921684

RESUMO

Psoriasis is a chronic inflammatory skin disorder driven by the IL-23/type 3 immune response. However, molecular mechanisms sustaining the chronicity of inflammation and psoriatic lesions remain elusive. Combining systematic analyses of several transcriptomic datasets, we delineated gene signatures across human psoriatic skin, identifying S100A9 as one of the most up-regulated genes, which was confirmed in lesioned skin from patients with psoriasis and preclinical psoriasiform skin inflammation models. Genetic ablation or pharmacologic inhibition of S100A9 alleviated Aldara-induced skin inflammation. By single-cell mapping of human psoriatic skin and bone marrow chimeric mice experiments, we identified keratinocytes as the major source of S100A9. Mechanistically, S100A9 induced IL-23 production by dendritic cells, driving the IL-23/type 3 immunity in psoriasiform skin inflammation. In addition, the cutaneous IL-23/IL-17 axis induced epidermal S100A9 expression in human and experimental psoriasis. Thus, we showed an autoregulatory circuit between keratinocyte-derived S100A9 and IL-23/type 3 immunity during psoriasiform inflammation, identifying a crucial function of S100A9 in the chronification of psoriasis.


Assuntos
Psoríase , Humanos , Animais , Camundongos , Pele/patologia , Queratinócitos/metabolismo , Inflamação/patologia , Calgranulina B/genética , Interleucina-23/genética , Interleucina-23/metabolismo , Modelos Animais de Doenças
10.
J Infect Dis ; 227(12): 1364-1375, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36763010

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers activation of the NLRP3 inflammasome, which promotes inflammation and aggravates severe COVID-19. Here, we report that SARS-CoV-2 induces upregulation and activation of human caspase-4/CASP4 (mouse caspase-11/CASP11), and this process contributes to NLRP3 activation. In vivo infections performed in transgenic hACE2 humanized mice, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with the increased pulmonary parenchymal area, reduced clinical score of the disease, and reduced mortality. Assessing human samples from fatal cases of COVID-19, we found that CASP4 was expressed in patient lungs and correlated with the expression of inflammasome components and inflammatory mediators, including CASP1, IL1B, IL18, and IL6. Collectively, our data establish that CASP4/11 promotes NLRP3 activation and disease pathology, revealing a possible target for therapeutic interventions for COVID-19.


Assuntos
COVID-19 , Inflamassomos , Camundongos , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Camundongos Transgênicos
11.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36526272

RESUMO

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Assuntos
COVID-19 , Sepse , Humanos , Camundongos , Animais , Oseltamivir/efeitos adversos , Zanamivir/efeitos adversos , Neuraminidase/metabolismo , Neuraminidase/farmacologia , Neutrófilos , Metaloproteinase 9 da Matriz/metabolismo , Espécies Reativas de Oxigênio , Lipopolissacarídeos/farmacologia , Sepse/induzido quimicamente
12.
Clin Exp Rheumatol ; 41(7): 1473-1479, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36441653

RESUMO

OBJECTIVES: To quantify survivin and NETs in synovial fluid (SF) of patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and to assess whether there is a correlation of the quantifications with the exclusion of OA diagnosis and the activity of RA. METHODS: We performed a cross-sectional, observational study, in which 32 patients with RA and 16 with OA were included. Clinical and laboratory data were obtained, in addition to routine analysis of SF and the measurement of SF survivin and NETs. RA activity was assessed by DAS28. RESULTS: Concentrations of survivin (median, 356.9 vs. 49.9 pg/mL; p=0.0006) and NETs (median, 100.7 vs. 49.7 ng/mL; p=0.004) were elevated in the SF of the RA group compared to those of the OA group. ROC curves showed the following values for measurements of survivin and NETs: AUC of 79% and 75% respectively, with sensitivity of 75% and specificity of 78% for both. There was no correlation between survivin and NETs values for both groups, but we found association between SF survivin and serum ACPA for RA patients. CONCLUSIONS: We found an independent association between levels of survivin and NETs in SF with the exclusion of OA diagnosis, but not with RA activity. There was no correlation between survivin and NETs in SF, because we suppose that resistance to apoptosis, mediated by survivin, and NETosis are independently related to the pathophysiology of RA.


Assuntos
Artrite Reumatoide , Osteoartrite , Líquido Sinovial , Humanos , Biomarcadores , Estudos Transversais , Survivina
13.
Ther Adv Med Oncol ; 14: 17588359221138386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506107

RESUMO

Background: A significant proportion of patients with non-small-cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICIs). Since metabolic reprogramming with increased glycolysis is a hallmark of cancer and is involved in immune evasion, we used 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) to evaluate the baseline glycolytic parameters of patients with advanced NSCLC submitted to ICIs, and assessed their predictive value. Methods: 18F-FDG PET/CT results in the 3 months before ICIs treatment were included. Maximum standardized uptake values, whole metabolic tumor volume (wMTV), and whole-body total lesion glycolysis (wTLG) were evaluated. Cutoff values for high or low glycolytic categories were determined using receiver-operating characteristic curves. Progression-free survival (PFS) and overall survival (OS) were evaluated. Patients with a complete response and a matching group with resistance to ICIs underwent immunohistochemistry analysis. An unsupervised k-means clustering model integrating programmed cell death ligand 1 (PD-L1) expression, glycolytic parameters, and ICIs therapy was performed. Results: In all, 98 patients were included. Lower baseline 18F-FDG PET/CT parameters were associated with responses to ICIs. Patients with low wMTV or wTLG had improved PFS and OS. High wTLG, strong tumor expression of glucose transporter-1, and lack of responses were significantly associated. Patients with low glycolytic parameters benefited from ICIs, regardless of chemotherapy. Conversely, those with high parameters benefited from the addition of chemotherapy. Patients with higher wTLG and lower PD-L1 were associated with progression and worse survival to ICIs monotherapy. Conclusions: Glycolytic metabolic profiles established through baseline 18F-FDG PET/CT are useful biomarkers for evaluating ICI therapy in advanced NSCLC.

14.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103544

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Inflamassomos , Animais , Humanos , Agentes de Imunomodulação , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2
15.
Cancer Immunol Res ; 10(11): 1299-1308, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36083496

RESUMO

Cytotoxic agents synergize with immune checkpoint inhibitors and improve outcomes for patients with several cancer types. Nonetheless, a parallel increase in the incidence of dose-limiting side effects, such as peripheral neuropathy, is often observed. Here, we investigated the role of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis in the modulation of paclitaxel-induced neuropathic pain. We found that human and mouse neural tissues, including the dorsal root ganglion (DRG), expressed basal levels of PD-1 and PD-L1. During the development of paclitaxel-induced neuropathy, an increase in PD-L1 expression was observed in macrophages from the DRG. This effect depended on Toll-like receptor 4 activation by paclitaxel. Furthermore, PD-L1 inhibited pain behavior triggered by paclitaxel or formalin in mice, suggesting that PD-1/PD-L1 signaling attenuates peripheral neuropathy development. Consistent with this, we observed that the combined use of anti-PD-L1 plus paclitaxel increased mechanical allodynia and chronic neuropathy development induced by single agents. This effect was associated with higher expression of inflammatory markers (Tnf, Il6, and Cx3cr1) in peripheral nervous tissue. Together, these results suggest that PD-1/PD-L1 inhibitors enhance paclitaxel-induced neuropathic pain by suppressing PD-1/PD-L1 antinociceptive signaling.


Assuntos
Antineoplásicos Fitogênicos , Neuralgia , Ratos , Humanos , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Antineoplásicos Fitogênicos/efeitos adversos , Ratos Sprague-Dawley , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Paclitaxel , Analgésicos/efeitos adversos
16.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666101

RESUMO

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Apoptose , Humanos , Macrófagos/metabolismo , Fagocitose
17.
J Mol Cell Biol ; 14(4)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35451490

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Assuntos
COVID-19 , SARS-CoV-2 , Síndrome da Liberação de Citocina , Humanos , Leucócitos Mononucleares , Monócitos
18.
Biomed Res Int ; 2022: 7442289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103239

RESUMO

Rheumatoid arthritis is an autoimmune and inflammatory disease that affects synovial joint tissues and skeletal muscle. Clinical-like cryotherapy benefits signs of joint inflammation in knee osteoarthritis after 60 days of anterior cruciate ligament transection surgery. However, it is unknown whether it also benefits acute knee arthritis (e.g., reduces inflammatory process and protects neuromuscular junction [NMJ] and muscle fibers). We aimed to analyze the effects of clinical-like cryotherapy on NMJ and quadriceps muscle fibers in a model of acute knee arthritis. Twenty-four male C57BL/6 mice (20 to 25 g) were randomly allocated into three groups: control (mice with no intervention), antigen-induced arthritis (AIA; mice sensitized and immunized with intra-articular [i.a.] injection of methylated bovine serum albumin [mBSA]), and AIA+cryotherapy (mice sensitized, immunized with i.a. injection of mBSA, and submitted to a clinical-like cryotherapy protocol). Twenty-one days after sensitization, arthritis was induced in immunized mice via i.a. injection of mBSA (100 µg/joint). Two clinical-like cryotherapy sessions (crushed ice pack for 20 min) were applied two hours apart. The first session was applied immediately after i.a. injection of mBSA. The quadriceps was removed two hours after the second clinical-like cryotherapy session for morphological analysis of muscle fibers (cross-sectional area), frequency distribution of muscle fiber area (%), and NMJ (area, perimeter, and maximum diameter). Gene expressions of mRNA involved in NMJ signaling (γ-nAChR, α1-nAChR, ε-nAChR, Agrin-MusK-Rapsyn, α-dystrobrevin, and utrophin) and atrophy (muscle RING-finger protein-1 and Atrogin-1) pathways were analyzed. Inflammatory signs were assessed in knee joint (swelling, articular surface temperature, and neutrophil migration in synovial fluid). Regarding morphological analysis of muscle fibers, 180 to 270 and >270 µm2 classes were higher in the AIA+cryotherapy than the AIA group. Area, perimeter, and maximum diameter of NMJ also increased in the AIA+cryotherapy compared with the control group. Agrin mRNA expression increased in the AIA+cryotherapy compared with the control and AIA groups. In the atrophy pathway, Atrogin-1 increased compared with the control and AIA groups. The AIA+cryotherapy group reduced knee swelling and neutrophil migration compared with the AIA group. In conclusion, clinical-like cryotherapy increased Agrin expression, contributing to NMJ maintenance and increased Atrogin-1 expression, thus protecting NMJ and muscle fiber. Furthermore, clinical-like cryotherapy reduced inflammatory signs (swelling and neutrophil migration) of acute knee arthritis.


Assuntos
Artrite Experimental/terapia , Artrite Reumatoide/terapia , Crioterapia/métodos , Inflamação/prevenção & controle , Articulação do Joelho , Músculo Quadríceps/inervação , Doença Aguda , Animais , Movimento Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Junção Neuromuscular , Termografia
19.
PLoS One ; 17(1): e0261667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061737

RESUMO

To assess the effects of clinical-like cryotherapy on inflammatory signs (in vivo neutrophil migration, cytokines, and joint inflammation), pain, joint swelling, balance, and motor coordination in mice with knee arthritis. Young C57BL/6 mice were randomly divided into three groups (8 to 10 mice per group): Control group: mice with no intervention; antigen-induced arthritis (AIA) group: mice sensitized and immunized with intra-articular (i.a.) injection of methylated bovine serum albumin (mBSA); and AIA + cryotherapy group: mice sensitized, immunized with i.a. injection of mBSA, and submitted to a clinical-like cryotherapy protocol. After 21 days of sensitization, AIA and AIA + cryotherapy groups received i.a. injection of mBSA (100 µg/joint) to induce joint inflammation, and a clinical-like cryotherapy protocol was applied to AIA + cryotherapy group (crushed ice bag, two cryotherapy sessions of 20 min every two hours). Experimental analysis was conducted in the initial (immediately after i.a. injection of mBSA) and final periods (two hours after the second cryotherapy session). The number of synovial fluid neutrophils, cytokine levels, joint histology, pain, joint swelling, and motor performance were also analyzed. Our results showed that clinical-like cryotherapy in mice with acute knee arthritis reduced inflammatory signs, pain, and joint swelling, and improved balance and motor coordination.


Assuntos
Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA