Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14287, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907001

RESUMO

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.


Assuntos
Reação Acrossômica , Meios de Cultura , Fertilização in vitro , Capacitação Espermática , Espermatozoides , Animais , Capacitação Espermática/efeitos dos fármacos , Masculino , Camundongos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Fertilização in vitro/métodos , Feminino , Reação Acrossômica/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Fosforilação , Fertilização , Desenvolvimento Embrionário/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
2.
Front Cell Dev Biol ; 12: 1386980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803392

RESUMO

Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.

4.
Front Cell Dev Biol ; 9: 800351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970552

RESUMO

Mammalian fertilization is a complex process involving a series of successive sperm-egg interaction steps mediated by different molecules and mechanisms. Studies carried out during the past 30 years, using a group of proteins named CRISP (Cysteine-RIch Secretory Proteins), have significantly contributed to elucidating the molecular mechanisms underlying mammalian gamete interaction. The CRISP family is composed of four members (i.e., CRISP1-4) in mammals, mainly expressed in the male tract, present in spermatozoa and exhibiting Ca2+ channel regulatory abilities. Biochemical, molecular and genetic approaches show that each CRISP protein participates in more than one stage of gamete interaction (i.e., cumulus penetration, sperm-ZP binding, ZP penetration, gamete fusion) by either ligand-receptor interactions or the regulation of several capacitation-associated events (i.e., protein tyrosine phosphorylation, acrosome reaction, hyperactivation, etc.) likely through their ability to regulate different sperm ion channels. Moreover, deletion of different numbers and combination of Crisp genes leading to the generation of single, double, triple and quadruple knockout mice showed that CRISP proteins are essential for male fertility and are involved not only in gamete interaction but also in previous and subsequent steps such as sperm transport within the female tract and early embryo development. Collectively, these observations reveal that CRISP have evolved to perform redundant as well as specialized functions and are organized in functional modules within the family that work through independent pathways and contribute distinctly to fertility success. Redundancy and compensation mechanisms within protein families are particularly important for spermatozoa which are transcriptionally and translationally inactive cells carrying numerous protein families, emphasizing the importance of generating multiple knockout models to unmask the true functional relevance of family proteins. Considering the high sequence and functional homology between rodent and human CRISP proteins, these observations will contribute to a better understanding and diagnosis of human infertility as well as the development of new contraceptive options.

5.
Front Cell Dev Biol ; 9: 686461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295893

RESUMO

Cation channel of sperm (CatSper), the main sperm-specific Ca2+ channel, plays a key role in mammalian fertilization, and it is essential for male fertility, becoming an attractive target for contraception. Based on this, in the present work, we investigated the effects of CatSper inactivation on in vitro and in vivo sperm fertilizing ability and the mechanisms underlying such effects. Exposure of cauda epididymal mouse sperm to different concentrations (1-20 µM) of the potent CatSper inhibitor HC-056456 (HC) during in vitro capacitation showed no effects on sperm viability but significantly affected Ca2+ entry into the cells, progressive motility, protein tyrosine phosphorylation, induced acrosome reaction, and hyperactivation, as well as the sperm's ability to in vitro fertilize cumulus oocyte complexes and zona-free eggs. Whereas the presence of HC during gamete coincubation did not affect in vitro fertilization, exposure of either non-capacitating or already capacitated sperm to HC prior to gamete coincubation severely reduced fertilization, indicating that sperm function is affected by HC when the cells are incubated with the drug before sperm-egg interaction. Of note, insemination of HC-treated sperm into the uterus significantly or completely reduced the percentage of oviductal fertilized eggs showing, for the first time, the effects of a CatSper inhibitor on in vivo fertilization. These observations, together with the finding that HC affects sperm fertilizing ability independently of the sperm capacitation status, provide further insights on how CatSper regulates sperm function and represent a solid proof of concept for developing a male/female non-hormonal contraceptive based on the pharmacological blockage of CatSper activity.

6.
J Cell Physiol ; 235(5): 4351-4360, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31612508

RESUMO

Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse-chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2 -activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore-activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Óvulo/fisiologia , Animais , Cálcio/metabolismo , Feminino , Fertilização/fisiologia , Masculino , Camundongos
7.
Reproduction ; 159(3): R139-R149, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689233

RESUMO

The use of emergency contraception (EC) methods is increasing worldwide as it constitutes an effective way to prevent unplanned pregnancy after unprotected sexual intercourse. During the last decade, ulipristal acetate (UPA), a selective progesterone receptor modulator, has emerged as the most effective EC pill, and it is now recommended as first-line hormonal treatment for EC in several countries. Its principal mechanism of action involves inhibition or delay of follicular rupture, but only when administered during the follicular phase before the luteinizing hormone (LH) peak. However, considering the high efficacy of UPA, it is possible that it also exerts contraceptive effects besides ovulation. In the present review, we summarize and discuss the existing evidence obtained on the effect of UPA on sperm function and post-ovulatory events as potential additional mechanisms to prevent pregnancy. The bulk of evidence collected so far indicates that UPA would not affect gamete function; however, it could impair embryo-uterine interaction. Thus, besides the described effects on ovarian function, UPA contraceptive effectiveness might also be attributed to post-ovulatory effects, depending on the moment of the female cycle in which the drug is administered.


Assuntos
Anticoncepção Pós-Coito , Contraceptivos Hormonais/farmacologia , Norpregnadienos/farmacologia , Oviductos/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Masculino , Ovulação/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
8.
Mol Hum Reprod ; 25(5): 257-264, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824928

RESUMO

Ulipristal acetate (UPA) is a selective progesterone receptor modulator used for emergency contraception that has proven to be highly effective in preventing pregnancy when taken up to 120 h after unprotected sexual intercourse. Even though it may act mainly by delaying or inhibiting ovulation, additional effects of UPA on post-fertilization events cannot be excluded. Therefore, the aim of this study was to determine whether a single post-ovulatory dose of UPA could prevent pregnancy using the mouse as a pre-clinical model. Mated females received a single dose of UPA (40 mg/kg) on Day E1.5 or E2.5 (E0.5: copulatory plug detection) and post-fertilization events were evaluated. Our studies revealed that UPA administration produced a significant decrease in the number of conceptuses compared to control. Moreover, UPA-treated females exhibited a lower number of early implantation sites on Day E5.5, despite normal in vivo embryo development and transport to the uterus at E3.5. Administration of UPA produced histological and functional alterations in the uterine horns, i.e., a dyssynchronous growth between endometrial glands and stroma, with non-physiological combination of both fractions compared to controls, and a completely impaired ability to respond to an artificial decidualization stimulus. Altogether, our results show that the administration of a single post-ovulatory dose of UPA impairs mouse pregnancy probably due to an effect on embryo-uterine interaction, supporting additional effects of the drug on post-fertilization events. Although these studies cannot be performed with human samples, our results with the mouse model provide new insights into the mechanism of action of UPA as an emergency contraception method.


Assuntos
Contraceptivos Hormonais/farmacologia , Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização/fisiologia , Norpregnadienos/farmacologia , Ovário/efeitos dos fármacos , Animais , Anticoncepção Pós-Coito/métodos , Copulação/fisiologia , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Masculino , Camundongos , Ovário/fisiologia , Ovulação/fisiologia , Gravidez
9.
Sci Rep ; 8(1): 17531, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510210

RESUMO

Epididymal Cysteine Rich Secretory Proteins 1 and 4 (CRISP1 and CRISP4) associate with sperm during maturation and play different roles in fertilization. However, males lacking each of these molecules individually are fertile, suggesting compensatory mechanisms between these homologous proteins. Based on this, in the present work, we generated double CRISP1/CRISP4 knockout (DKO) mice and examined their reproductive phenotype. Our data showed that the simultaneous lack of the two epididymal proteins results in clear fertility defects. Interestingly, whereas most of the animals exhibited specific sperm fertilizing ability defects supportive of the role of CRISP proteins in fertilization, one third of the males showed an unexpected epididymo-orchitis phenotype with altered levels of inflammatory molecules and non-viable sperm in the epididymis. Further analysis showed that DKO mice exhibited an immature epididymal epithelium and abnormal luminal pH, supporting these defects as likely responsible for the different phenotypes observed. These observations reveal that CRISP proteins are relevant for epididymal epithelium differentiation and male fertility, contributing to a better understanding of the fine-tuning mechanisms underlying sperm maturation and immunotolerance in the epididymis with clear implications for human epididymal physiology and pathology.


Assuntos
Diferenciação Celular , Epididimo/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Glicoproteínas de Membrana/deficiência , Proteínas de Plasma Seminal/genética , Animais , Epididimo/patologia , Epitélio/metabolismo , Epitélio/patologia , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout
10.
Mol Reprod Dev ; 85(4): 285-286, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29665172
11.
Hum Reprod ; 33(5): 844-859, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534229

RESUMO

STUDY QUESTION: Is ceramide-1-phosphate (C1P) an ovarian protective agent during alkylating chemotherapy? SUMMARY ANSWER: Local administration of C1P drastically reduces ovarian damage induced by cyclophosphamide (Cy) via protection of follicular reserve, restoration of hormone levels, inhibition of apoptosis and improvement of stromal vasculature, while protecting fertility, oocyte quality and uterine morphology. WHAT IS KNOWN ALREADY: Cancer-directed therapies cause accelerated loss of ovarian reserve and lead to premature ovarian failure (POF). Previous studies have demonstrated that C1P regulates different cellular processes including cell proliferation, cell migration, angiogenesis and apoptosis. This sphingolipid may be capable of modulating vascular development and apoptosis in ovaries affected by chemotherapy. STUDY DESIGN, SIZE, DURATION: The 6-8-week-old mice were weighed and administered either a single intraperitoneal injection of Cy (75 mg/kg) or an equal volume of saline solution only for control mice. Control and Cy mice underwent sham surgery and received an intrabursal injection of saline solution, while Cy + C1P animal groups received 5 µl C1P, either 0.5 or 1 mM, under the bursa of both ovaries 1 h prior to Cy administration. PARTICIPANTS/MATERIALS, SETTING, METHODS: Animals were euthanized by cervical dislocation or cardiac puncture 2 weeks after surgery for collection of blood orovary and uterus samples, which were cleaned of adhering tissue in culture medium and used for subsequent assays. Ovaries were used for Western blotting or immunohistochemical and/or histological analyses or steroid extraction, as required (n = 5-8 per group). A set of mice (n = 3/group) was destined for oocyte recovery and IVF. Finally, another set (n = 5-6/group) was separated to study fertility parameters. MAIN RESULTS AND THE ROLE OF CHANCE: The number of primordial (P < 0.01), primary (P < 0.05) and preantral follicles (P < 0.05) were decreased in Cy-treated mice compared to control animals, while atretic follicles were increased (P < 0.001). In Cy + C1P mice, the ovaries recovered control numbers of these follicular structures, in both C1P doses studied. Cy affected AMH expression, while it was at least partially recovered when C1P is administered as well. Cy caused an increase in serum FSH concentration (P < 0.01), which was prevented by C1P coadministration (P < 0.01). E2 levels in Cy-treated ovaries decreased significantly compared to control ovaries (P < 0.01), whilst C1P restored E2 levels to those of control ovaries (P < 0.01). Cy increased the expression of BAX (P < 0.01) and decreased the expression of BCLX-L compared to control ovaries (P < 0.01). The ovarian BCLX-L:BAX ratio was also lower in Cy-treated mice (P < 0.05). In the Cy + C1P group, the expression levels of BAX, BCLX-L and BCLX-L:BAX ratio were no different than those in control ovaries. In addition, acid sphingomyelinase (A-SMase) expression was higher in Cy-treated ovaries, whilst remaining similar to the control in the Cy + C1P group. Cy increased the apoptotic index (TUNEL-positive follicles/total follicles) in preantral and early antral stages, compared to control ovaries (P < 0.001 and P < 0.01, respectively). C1P protected follicles from this increase. No primordial or primary follicular cells stained for either cleaved caspase-3 or TUNEL when exposed to Cy, therefore, we have found no evidence for follicular reserve depletion in response to Cy being due to apoptosis. Cy caused evident vascular injury, especially in large cortical stromal vessels, and some neovascularization. In the Cy + C1P group, the disruptions in vascular wall continuity were less evident and the number of healthy stromal blood vessels seemed to be restored. In Cy-treated ovaries α-SMA-positive cells showed a less uniform distribution around blood vessels. C1P coadministration partially prevented this Cy-induced effect, with a higher presence of α-SMA-positive cells surrounding vessels. By H&E staining, Cy-treated mice showed endometrial alterations compared to controls, affecting both epithelial and stromal compartments. However, C1P allowed that the stromal tissue to maintain its loose quality and its glandular branches. Cy-treated animals had significantly lower pregnancy rates and smaller litter sizes compared with control mice (P = 0.013 and P < 0.05, respectively), whereas cotreatment with C1P preserved normal fertility. Furthermore, a higher (P < 0.05) proportion of abnormal oocytes was recovered from Cy-treated mice compared to the control, which was prevented by C1P administration. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: The results of this study were generated from an in-vivo animal experimental model, already used by several authors. Further studies on C1P functions in female reproduction in pathological conditions such as chemotherapy-induced ovarian failure and on the safety of use of this sphingolipid are required. WIDER IMPLICATIONS OF THE FINDINGS: The present findings showed that C1P administration prior to Cy might be a promising fertility preservation strategy in female patients who undergo chemotherapy. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from ANPCyT (PICT 2015-1117), CONICET (PIP 380), Cancer National Institute (INC) and Roemmers Foundation, Argentina. The authors declare no conflicts of interest.


Assuntos
Ceramidas/uso terapêutico , Ciclofosfamida/efeitos adversos , Preservação da Fertilidade/métodos , Ovário/efeitos dos fármacos , Insuficiência Ovariana Primária/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Animais , Hormônio Antimülleriano/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ceramidas/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovário/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Substâncias Protetoras/farmacologia
12.
Biol Reprod ; 99(2): 373-383, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481619

RESUMO

Epididymal sperm protein CRISP1 has the ability to both regulate murine CatSper, a key sperm calcium channel, and interact with egg-binding sites during fertilization. In spite of its relevance for sperm function, Crisp1-/-mice are fertile. Considering that phenotypes can be influenced by the genetic background, in the present work mice from the original mixed Crisp1-/- colony (129/SvEv*C57BL/6) were backcrossed onto the C57BL/6 strain for subsequent analysis of their reproductive phenotype. Whereas fertility and fertilization rates of C57BL/6 Crisp1-/- males did not differ from those reported for mice from the mixed background, several sperm functional parameters were clearly affected by the genetic background. Crisp1-/- sperm from the homogeneous background exhibited defects in both the progesterone-induced acrosome reaction and motility not observed in the mixed background, and normal rather than reduced protein tyrosine phosphorylation. Additional studies revealed a significant decrease in sperm hyperactivation as well as in cAMP and protein kinase A (PKA) substrate phosphorylation levels in sperm from both colonies. The finding that exposure of mutant sperm to a cAMP analog and phosphodiesterase inhibitor overcame the sperm functional defects observed in each colony indicated that a common cAMP-PKA signaling defect led to different phenotypes depending on the genetic background. Altogether, our observations indicate that the phenotype of CRISP1 null males is modulated by the genetic context and reveal new roles for the protein in both the functional events and signaling pathways associated to capacitation.


Assuntos
Fertilidade/genética , Fertilização/genética , Glicoproteínas de Membrana/genética , Reprodução/genética , Espermatozoides/metabolismo , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Patrimônio Genético , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Progesterona/farmacologia , Motilidade dos Espermatozoides/genética , Espermatozoides/efeitos dos fármacos
13.
Contraception ; 95(6): 586-591, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28238840

RESUMO

OBJECTIVE: Ulispristal acetate (UPA) is a selective progesterone receptor modulator widely used for emergency contraception (EC). The described main mechanism of action is by inhibiting or delaying ovulation; however, the postovulatory effects of the drug are still on debate. Therefore, the aim of this study was to determine whether UPA could interfere with human sperm fertilizing ability. STUDY DESIGN: Human motile spermatozoa were incubated under capacitating conditions with or without UPA, and then used to inseminate human tubal explants, mouse cumulus-oocyte complexes and zona-free hamster eggs. The ability of UPA to interact with human sperm progesterone (P)-binding sites was investigated by incubating the cells with fluorescent-labeled P and analyzing them by fluorescence microscopy. RESULTS: UPA did not affect the ability of human sperm to bind to human tubal tissue explants surface or to penetrate the mouse cumulus mass and the zona-free hamster eggs. In addition, concentrations of UPA much higher than those present in the plasma of EC pill users were required to bind to human sperm P-binding sites. CONCLUSIONS: Our study supports a lack of an agonist or antagonist action of UPA on different functional parameters associated with the fertilizing ability of human sperm. IMPLICATIONS: This study provides new functional evidence supporting that the contraceptive action of UPA is not related to effects on human sperm cells, contributing to a better understanding of the mechanism of action of UPA as EC.


Assuntos
Anticoncepcionais Femininos/farmacologia , Tubas Uterinas/metabolismo , Norpregnadienos/farmacologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Animais , Sítios de Ligação/efeitos dos fármacos , Anticoncepção Pós-Coito , Cricetinae , Células do Cúmulo/fisiologia , Feminino , Humanos , Masculino , Camundongos , Norpregnadienos/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/efeitos dos fármacos
14.
Adv Anat Embryol Cell Biol ; 220: 159-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27194355

RESUMO

The acrosome reaction (AR) is a universal requisite for sperm-egg fusion. However, whereas through the animal kingdom fusion of spermatozoa with the egg plasma membrane occurs via the inner acrosomal membrane exposed after the AR, in eutherian mammals, gamete fusion takes place through a specialized region of the acrosome known as the equatorial segment (ES) which becomes fusogenic only after the AR is completed. This chapter focuses on the different molecular mechanisms involved in the acquisition of the fusogenicity of the ES after the AR. We provide an update of the knowledge about the proteins proposed to have a role in this process either by modifying cytoskeletal and/or membrane molecules or by relocalizing to the ES after the AR to subsequently participate in gamete fusion.


Assuntos
Reação Acrossômica/genética , Acrossomo/metabolismo , Fusão de Membrana/genética , Capacitação Espermática/genética , Zona Pelúcida/fisiologia , Acrosina/genética , Acrosina/metabolismo , Acrossomo/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo , Transdução de Sinais
15.
Hum Reprod ; 31(1): 53-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26582845

RESUMO

STUDY QUESTION: Does ulipristal acetate (UPA), a selective progesterone receptor modulator used for emergency contraception (EC), interfere with fertilization or early embryo development in vitro and in vivo? SUMMARY ANSWER: At doses similar to those used for EC, UPA does not affect mouse gamete transport, fertilization or embryo development. WHAT IS KNOWN ALREADY: UPA acts as an emergency contraceptive mainly by inhibiting or delaying ovulation. However, there is little information regarding its effects on post-ovulatory events preceding implantation. STUDY DESIGN, SIZE, DURATION: This was an in vitro and in vivo experimental study involving the use of mouse gametes and embryos from at least three animals in each set of experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: For in vitro fertilization experiments, mouse epididymal spermatozoa capacitated in the presence of different concentrations of UPA (0-1000 ng/ml) were used to inseminate cumulus-intact or cumulus-free eggs in the presence or absence of UPA during gamete co-incubation, and the percentage of fertilized eggs was determined. For in vivo fertilization experiments, superovulated females caged with proven fertile males were injected with UPA (40 mg/kg) or vehicle just before or just after mating and the percentage of fertilized eggs recovered from the ampulla was determined. To investigate the effect of UPA on embryo development, zygotes were recovered from mated females, cultured in the presence of UPA (1000 ng/ml) for 4 days and the progression of embryo development was monitored daily. MAIN RESULTS AND THE ROLE OF CHANCE: In vitro studies revealed that the presence of UPA during capacitation and/or gamete co-incubation does not affect fertilization. Whereas the in vivo administration of UPA at the same time as hCG injection produced a decrease in the number of eggs ovulated compared with controls (vehicle injected animals, P < 0.05), no effects on fertilization were observed when UPA was administered shortly before or after mating. No differences were observed in either the percentage of cleaved embryos or the cleavage speed when UPA was present during in vitro embryo culture. LIMITATIONS, REASONS FOR CAUTION: Considering the ethical and technical limitations inherent to the use of human gametes for fertilization studies, the mouse model was used as an approach for exploring the potential effects of UPA on in vivo sperm transport and fertilization. Nevertheless, the extrapolation of these results to humans requires further investigation. WIDER IMPLICATIONS OF THE FINDINGS: This study presents new evidence on the lack of effect of UPA on gamete interaction and embryo development, providing new insights into the mechanism of action of UPA as an emergency contraceptive method with potential clinical implications. These new findings could contribute to increase the acceptability and proper use of UPA as an emergency contraceptive method. STUDY FUNDING/COMPETING INTERESTS: This study was partially supported by a National Agency of Scientific and Technological Promotion (ANPCyT), Argentina grants PICT 2011-061 to D.J.C. and PICT 2011-2023 to P.S.C. None of the authors has any competing interests to declare.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro/efeitos dos fármacos , Norpregnadienos/farmacologia , Receptores de Progesterona/efeitos dos fármacos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Animais , Anticoncepção Pós-Coito , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Cell Biol ; 210(7): 1213-24, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416967

RESUMO

Ca(2+)-dependent mechanisms are critical for successful completion of fertilization. Here, we demonstrate that CRISP1, a sperm protein involved in mammalian fertilization, is also present in the female gamete and capable of modulating key sperm Ca(2+) channels. Specifically, we show that CRISP1 is expressed by the cumulus cells that surround the egg and that fertilization of cumulus-oocyte complexes from CRISP1 knockout females is impaired because of a failure of sperm to penetrate the cumulus. We provide evidence that CRISP1 stimulates sperm orientation by modulating sperm hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, patch clamping of sperm revealed that CRISP1 has the ability to regulate CatSper, the principal sperm Ca(2+) channel involved in hyperactivation and essential for fertility. Given the critical role of Ca(2+) for sperm motility, we propose a novel CRISP1-mediated fine-tuning mechanism to regulate sperm hyperactivation and orientation for successful penetration of the cumulus during fertilization.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Glicoproteínas de Membrana/metabolismo , Oócitos/metabolismo , Motilidade dos Espermatozoides/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Oócitos/citologia , Espermatozoides/citologia
17.
Dev Biol ; 405(2): 237-49, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26169470

RESUMO

Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.


Assuntos
Reação Acrossômica/fisiologia , Cofilina 1/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exocitose , Quinases Lim/metabolismo , Capacitação Espermática/fisiologia , Actinas/metabolismo , Animais , Cruzamentos Genéticos , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Fosforilação , Transdução de Sinais , Espermatozoides/metabolismo
18.
FASEB J ; 29(10): 4189-200, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26136479

RESUMO

Lectin-glycan recognition systems play central roles in many physiologic and pathologic processes. We identified a role for galectin-1 (Gal-1), a highly conserved glycan-binding protein, in the control of sperm function. We found that Gal-1 is expressed in the epididymis and associates with sperm during epididymal maturation. Exposure of sperm to Gal-1 resulted in glycan-dependent modulation of the acrosome reaction (AR), a key event in the fertilization process. Gal-1-deficient (Lgals1(-/-)) mice revealed the essential contribution of this lectin for full sperm fertilizing ability both in vitro and in vivo. Mechanistically, Lgals1(-/-) sperm exhibited defects in their ability to develop hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, Lgals1(-/-) sperm showed a decreased ability to control cell volume and to undergo progesterone-induced AR, phenotypes that were rescued by exposure of the cells to recombinant Gal-1. Interestingly, the AR defect was associated with a deficiency in sperm membrane potential hyperpolarization. Our study highlights the relevance of the Gal-1-glycan axis in sperm function with critical implications in mammalian reproductive biology.


Assuntos
Membrana Celular/fisiologia , Galectina 1/metabolismo , Polissacarídeos/metabolismo , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Reação Acrossômica/fisiologia , Animais , Membrana Celular/metabolismo , Epididimo/citologia , Epididimo/metabolismo , Feminino , Fertilização/efeitos dos fármacos , Galectina 1/genética , Galectina 1/farmacologia , Expressão Gênica , Immunoblotting , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Testículo/citologia , Testículo/metabolismo
19.
PLoS One ; 8(8): e71995, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951277

RESUMO

Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca(2+) concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca(2+) spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca(2+) release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca(2+) ionophore, suggesting that the Ca(2+) source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca(2+) rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis.


Assuntos
Membrana Celular/metabolismo , Fertilização/fisiologia , Óvulo/fisiologia , Fosfatidilserinas/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Anexina A5/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Membrana Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Fluoresceína-5-Isotiocianato/metabolismo , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Óvulo/citologia , Óvulo/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatozoides/citologia , Espermatozoides/fisiologia , Zigoto/metabolismo
20.
J Androl ; 33(6): 1360-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22653965

RESUMO

Cysteine-rich secretory protein 2 (CRISP2) is a testicular sperm protein proposed to be involved in fertilization. With the aim of examining the relevance of CRISP2 for fertility and its potential use as a target for contraception, in the present work, male and female rats were immunized with recombinant CRISP2 coupled to maltose-binding protein (MBP) and evaluated for their subsequent fertility. As controls, animals were injected with either MBP or recombinant CRISP1. Enzyme-linked immunosorbent assay of sera collected at different intervals after immunization indicated that CRISP2 immunization raised specific antibodies in both sexes, with levels that increased as a function of time. Western blot studies revealed that anti-CRISP2 sera were capable of recognizing CRISP2 in testicular, epididymal, and sperm extracts, whereas histological studies showed no evidence of autoimmune orchitis or epididymitis. Indirect immunofluorescence experiments revealed the ability of anti-CRISP2 sera to recognize the native sperm protein in fresh, capacitated, and ionophore-induced acrosome-reacted cells. Moreover, anti-CRISP2 sera significantly inhibited the sperm ability to penetrate zona-free eggs, confirming the role of CRISP2 in rat gamete fusion. In spite of the presence of circulating anti-CRISP2 antibodies capable of inhibiting the sperm fertilizing ability, mating studies revealed no effects of CRISP2 immunization on male or female fertility, in contrast to the significant inhibition observed in both sexes in animals injected with CRISP1. Together, these observations indicated the immunogenic properties of testicular CRISP2 but do not support CRISP2 as a target for immunocontraception or as a molecule responsible for generating autoimmune orchitis or immunoinfertility.


Assuntos
Fertilização/fisiologia , Glicoproteínas/imunologia , Animais , Moléculas de Adesão Celular , Anticoncepção Imunológica , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Recombinantes/imunologia , Capacitação Espermática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA