Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755084

RESUMO

In the present study, the recovery of valuable molecules of proven anti-inflammatory and antimicrobial activity of the acidophilic microalga Coccomyxa onubensis (C. onubensis) were evaluated using green technologies based on ultrasound-assisted extraction (UAE). Using a factorial design (3 × 2) based on response surface methodology and Pareto charts, two types of ultrasonic equipment (bath and probe) were evaluated to recover valuable compounds, including the major terpenoid of C. onubensis, lutein, and the antimicrobial activity of the microalgal extracts obtained under optimal ultrasound conditions (desirability function) was evaluated versus conventional extraction. Significant differences in lutein recovery were observed between ultrasonic bath and ultrasonic probe and conventional extraction. Furthermore, the antimicrobial activity displayed by C. onubensis UAE-based extracts was greater than that obtained in solvent-based extracts, highlighting the effects of the extracts against pathogens such as Enterococcus hirae and Bacillus subtilis, followed by Staphylococcus aureus and Escherichia coli. In addition, gas chromatography-mass spectrometry was performed to detect valuable anti-inflammatory and antimicrobial biomolecules present in the optimal C. onubensis extracts, which revealed that phytol, sterol-like, terpenoid, and even fatty acid structures could also be responsible for the antibacterial activities of the extracts. Moreover, UAE displayed a positive effect on the recovery of valuable molecules, improving biocidal effects. Our study results facilitate the use of green technology as a good tool in algal bioprocess engineering, improving energy consumption and minimizing environmental impacts and process costs, as well as provide a valuable product for applications in the field of biotechnology.


Assuntos
Anti-Infecciosos , Clorófitas , Microalgas , Luteína , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
2.
J Microbiol Methods ; 128: 74-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27432343

RESUMO

The use of Nile Red for rapid monitoring of the neutral lipid content in microalgae has gained interest over the last decade, since neutral lipids are feedstock for renewable transportation fuel. In this review, we discuss the main considerations needed to make an NR protocol reliable for staining neutral lipids in microalgae. Cell wall permeability must be enhanced by using stain carriers: DMSO (5% v/v to 25% v/v), glycerol (0.1 to 0.125mg/mL), or EDTA (3.0 to 3.8mg/mL). Temperatures between 30 and 40°C facilitate the diffusion of NR through the cell wall without incurring excess quenching. Good NR-lipid interaction requires using a low NR/cell ratio; the NR concentration must be between 0.25µg/mL and 2.0µg/mL, and the cell concentration >5×10(4)cells/mL. In order to have the maximum and stable NR fluorescence, it is necessary to scan the excitation/emission wavelengths for up to a 40-min of incubation time. We outline a five-step method to customize the Nile Red protocol to a specific strain: 1) Evaluate the strain's suitability by checking for the presence of neutral lipid, 2) Select of the best excitation/emission wavelength, 3) Optimization of incubation time, stain carrier, dye concentration, and temperature, 4) Prepare single-strain algal cultures with different lipid contents to calibrate NR fluorescence with neutral-lipid content, and 5) Correlate NR fluorescence intensity to neutral lipid content for the same strain. Once the protocol is customized, the NR method allows for rapid and reliable monitoring of neutral lipid content of a microalgae strain.


Assuntos
Corantes Fluorescentes/química , Lipídeos/análise , Microalgas/química , Oxazinas/química , Calibragem , Parede Celular/química , Dimetil Sulfóxido/química , Ácido Edético/química , Glicerol/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA