Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455685

RESUMO

Cross-presentation is an important mechanism for the differentiation of effector cytotoxic T lymphocytes (CTL) from naïve CD8+ T-cells, a key response for the clearance of intracellular pathogens and tumors. The liposomal co-encapsulation of the pore-forming protein sticholysin II (StII) with ovalbumin (OVA) (Lp/OVA/StII) induces a powerful OVA-specific CTL activation and an anti-tumor response in vivo. However, the pathway through which the StII contained in this preparation is able to induce antigen cross-presentation and the type of professional antigen presenting cells (APCs) involved have not been elucidated. Here, the ability of mouse bone marrow-derived dendritic cells (BM-DCs) and macrophages (BM-MΦs) stimulated with Lp/OVA/StII to activate SIINFEKL-specific B3Z CD8+ T cells was evaluated in the presence of selected inhibitors. BM-MΦs, but not BM-DCs were able to induce SIINFEKL-specific B3Z CD8+ T cell activation upon stimulation with Lp/OVA/StII. The cross-presentation of OVA was markedly decreased by the lysosome protease inhibitors, leupeptin and cathepsin general inhibitor, while it was unaffected by the proteasome inhibitor epoxomicin. This process was also significantly reduced by phagocytosis and Golgi apparatus function inhibitors, cytochalasin D and brefeldin A, respectively. These results are consistent with the concept that BM-MΦs internalize these liposomes through a phagocytic mechanism resulting in the cross-presentation of the encapsulated OVA by the vacuolar pathway. The contribution of macrophages to the CTL response induced by Lp/OVA/StII in vivo was determined by depleting macrophages with clodronate-containing liposomes. CTL induction was almost completely abrogated in mice depleted of macrophages, demonstrating the relevance of these APCs in the antigen cross-presentation induced by this formulation.


Assuntos
Venenos de Cnidários/metabolismo , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Linfócitos T Citotóxicos/imunologia , Vacúolos/metabolismo , Animais , Antígenos/imunologia , Antígenos CD8/metabolismo , Células Cultivadas , Venenos de Cnidários/química , Apresentação Cruzada , Feminino , Leupeptinas/farmacologia , Lipossomos/química , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
2.
J Immunol ; 198(7): 2772-2784, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258198

RESUMO

Vaccine strategies to enhance CD8+ CTL responses remain a current challenge because they should overcome the plasmatic and endosomal membranes for favoring exogenous Ag access to the cytosol of APCs. As a way to avoid this hurdle, sticholysin (St) II, a pore-forming protein from the Caribbean Sea anemone Stichodactyla helianthus, was encapsulated with OVA into liposomes (Lp/OVA/StII) to assess their efficacy to induce a CTL response. OVA-specific CD8+ T cells transferred to mice immunized with Lp/OVA/StII experienced a greater expansion than when the recipients were injected with the vesicles without St, mostly exhibiting a memory phenotype. Consequently, Lp/OVA/StII induced a more potent effector function, as shown by CTLs, in vivo assays. Furthermore, treatment of E.G7-OVA tumor-bearing mice with Lp/OVA/StII significantly reduced tumor growth being more noticeable in the preventive assay. The contribution of CD4+ and CD8+ T cells to CTL and antitumor activity, respectively, was elucidated. Interestingly, the irreversibly inactive variant of the StI mutant StI W111C, encapsulated with OVA into Lp, elicited a similar OVA-specific CTL response to that observed with Lp/OVA/StII or vesicles encapsulating recombinant StI or the reversibly inactive StI W111C dimer. These findings suggest the relative independence between StII pore-forming activity and its immunomodulatory properties. In addition, StII-induced in vitro maturation of dendritic cells might be supporting these properties. These results are the first evidence, to our knowledge, that StII, a pore-forming protein from a marine eukaryotic organism, encapsulated into Lp functions as an adjuvant to induce a robust specific CTL response.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer/imunologia , Venenos de Cnidários/administração & dosagem , Neoplasias Experimentais/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Venenos de Cnidários/imunologia , Feminino , Citometria de Fluxo , Lipossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia
3.
Front Immunol ; 7: 374, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713745

RESUMO

Liposomes containing phosphatidylcholine have been widely used as adjuvants. Recently, we demonstrated that B-1 cells produce dipalmitoyl-phosphatidylcholine (DPPC)-specific IgM upon immunization of BALB/c mice with DPPC-liposomes encapsulating ovalbumin (OVA). Although this preparation enhanced the OVA-specific humoral response, the contribution of anti-DPPC antibodies to this effect was unclear. Here, we demonstrate that these antibodies are secreted by B-1 cells independently of the presence of OVA in the formulation. We also confirm that these antibodies are specific for phosphocholine. The anti-OVA humoral response was partially restored in B-1 cells-deficient BALB/xid mice by immunization with the liposomes opsonized with the serum total immunoglobulin (Ig) fraction containing anti-phosphocholine antibodies, generated in wild-type animals. This result could be related to the increased phagocytosis by peritoneal macrophages of the particles opsonized with the serum total Ig or IgM fractions, both containing anti-phosphocholine antibodies. In conclusion, in the present work, it has been demonstrated that phosphocholine-specific antibodies improve T-dependent antibody responses against OVA carried by DPPC-liposomes.

4.
Int Immunol ; 26(8): 427-37, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24618118

RESUMO

B-1 lymphocytes comprise a unique subset of B cells that differ phenotypically, ontogenetically and functionally from conventional B-2 cells. A frequent specificity of the antibody repertoire of peritoneal B-1 cells is phosphatidylcholine. Liposomes containing phosphatidylcholine have been studied as adjuvants and their interaction with dendritic cells and macrophages has been demonstrated. However, the role of B-1 cells in the adjuvanticity of liposomes composed of phosphatidylcholine has not been explored. In the present work, we studied the contribution of B-1 cells to the humoral response against ovalbumin (OVA) encapsulated into dipalmitoylphosphatidylcholine (DPPC) and cholesterol-containing liposomes. BALB/X-linked immunodeficient (xid) mice, which are deficient in B-1 cells, showed quantitative and qualitative differences in the anti-OVA antibody response compared with wild-type animals after immunization with these liposomes. The OVA-specific immune response was significantly increased in the BALB/xid mice when reconstituted with B-1 cells from naive BALB/c mice. Our results indicate the internalization of DPPC-containing liposomes by these cells and their migration from the peritoneal cavity to the spleen. Phosphatidylcholine significantly contributed to the immunogenicity of liposomes, as DPPC-containing liposomes more effectively stimulated the anti-OVA response compared with vesicles composed of dipalmitoylphosphatidylglycerol. In conclusion, we present evidence for a cognate interaction between B-1 cells and phosphatidylcholine liposomes, modulating the immune response to encapsulated antigens. This provides a novel targeting approach to assess the role of B-1 cells in humoral immunity.


Assuntos
Antígenos/imunologia , Subpopulações de Linfócitos B/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos , Antígenos/química , Subpopulações de Linfócitos B/metabolismo , Movimento Celular , Feminino , Imunização , Lipossomos , Camundongos , Ovalbumina/imunologia , Fosfatidilcolinas/química , Fosfatidilcolinas/imunologia , Baço/imunologia
5.
Immunobiology ; 219(6): 403-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24594322

RESUMO

Macrophages respond to endogenous and non-self stimuli acquiring the M1 or M2 phenotypes, corresponding to classical or alternative activation, respectively. The role of B-1 cells in the regulation of macrophage polarization through the secretion of interleukin (IL)-10 has been demonstrated. However, the influence of B-1 cells on macrophage phenotype induction by an immunogen that suppress their ability to secrete IL-10 has not been explored. Here, we studied the peritoneal macrophage pattern induced by liposomes comprised of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) carrying ovalbumin (OVA) (Lp DPPC/OVA), and the involvement of B-1 cells in macrophage polarization. Peritoneal cells from BALB/c, B-1 cells-deficient BALB/xid and C57BL/6 mice immunized with Lp DPPC/OVA and OVA in soluble form (PBS/OVA) were analyzed and stimulated or not in vitro with lipopolysaccharide (LPS). Peritoneal macrophages from BALB/c and C57BL/6 mice immunized with Lp DPPC/OVA showed an M2-like phenotype as evidenced by their high arginase activity without LPS stimulation. Upon stimulation, these macrophages were reprogrammable toward the M1 phenotype with the upregulation of nitric oxide (NO) and a decrease in IL-10 secretion. In addition, high IFN-γ levels were detected in the culture supernatant of peritoneal cells from BALB/c and C57BL/6 mice immunized with Lp DPPC/OVA. Nevertheless, still high levels of arginase activity and undetectable levels of IL-12 were found, indicating that the switch to a classical activation state was not complete. In the peritoneal cells from liposomes-immunized BALB/xid mice, levels of arginase activity, NO, and IL-6 were below those from wild type animals, but the last two products were restored upon adoptive transfer of B-1 cells, together with an increase in IFN-γ secretion. Summarizing, we have demonstrated that Lp DPPC/OVA induce an M2-like pattern in peritoneal macrophages reprogrammable to M1 phenotype after LPS stimulation, with the involvement of B-1 cells.


Assuntos
Linfócitos B/imunologia , Colesterol/farmacologia , Lipossomos/farmacologia , Macrófagos Peritoneais/imunologia , Ovalbumina/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/farmacologia , Transferência Adotiva , Animais , Arginase/biossíntese , Linfócitos B/transplante , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/farmacologia , Interferon gama/biossíntese , Interleucina-10/metabolismo , Interleucina-12/biossíntese , Interleucina-6/biossíntese , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico/biossíntese , Fenótipo , Fosfatidilcolinas/farmacologia
6.
Int J Med Microbiol ; 301(1): 16-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20708963

RESUMO

Neisseria meningitidis causes meningitis and septicemia. There is no single vaccine against all serogroup B meningococcal (MenB) strains up to now. Their capsular polysaccharide (MenB CPS) bears epitopes both cross-reacting and non-cross-reactive with human polysialic acid. A bactericidal and protective antibody mAb (13D9) recognizing a unique epitope in MenB CPS was used to screen a phage-displayed peptide library. Four peptides, able to bind mAb 13D9 in competition with MenB CPS, were identified. Immunization of mice with the phage-displayed peptides elicited anti-peptide IgG antibodies, mainly IgG(2a) for 3 of the peptides and bactericidal and protective antibody levels for one of them. Peptides specifically targeting the immune response toward epitopes found only in MenB CPS could be considered for a universal vaccine against serogroup B meningococcal strains.


Assuntos
Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Peptídeos/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Biblioteca de Peptídeos , Ratos , Ensaios de Anticorpos Bactericidas Séricos
7.
Bioconjug Chem ; 22(1): 33-41, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21141955

RESUMO

The formulation of a broadly protective vaccine to prevent the serogroup B Neisseria meningitidis (MenB) disease is still an unmet medical need. We have previously reported the induction of bactericidal and protective antibodies against MenB after immunization of mice with a phage-displayed peptide named 4 L-5. This peptide mimics a capsular polysaccharide (CPS) epitope in MenB. With the aim of developing vaccine formulations that could be used in humans, we evaluate in this study various forms of presentation to the immune system of the 4 L-5 sequence, based on synthetic peptides. We synthesized the following: (i) a linear 4 L-5 peptide, (ii) a multiple antigen peptide containing four copies of the 4 L-5 sequence (named MAP), which was then dimerized, and the product named dimeric MAP, and (iii) a second multiple antigen peptide, in this case with two copies of the 4 L-5 sequence and a copy of a T-helper cell epitope of tetanus toxoid, which was then dimerized and the product named MAP-TT. The linear peptide, the MAP, and the dimeric MAP were conjugated to the carrier protein P64K by different conjugation methods. Plain antigens and antigens coupled to P64K were used to immunize BALB/c mice. Of those variants that gave immunogenic results, MAP-TT rendered the highest levels of specific antipeptide IgG antibodies and serum bactericidal activity. These results can find application in the development of meningococcal vaccine candidates and in peptide-based vaccines strategies.


Assuntos
Apresentação de Antígeno , Cápsulas Bacterianas/imunologia , Neisseria meningitidis Sorogrupo B , Peptidomiméticos/imunologia , Sequência de Aminoácidos , Animais , Cápsulas Bacterianas/química , Relação Dose-Resposta Imunológica , Desenho de Fármacos , Feminino , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peptidomiméticos/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Ensaios de Anticorpos Bactericidas Séricos
8.
Curr Microbiol ; 60(2): 79-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19771476

RESUMO

The development of new immune potentiators for human vaccines is an important and expanding field of research. In the present study, the ability of the capsular polysaccharide from Neisseria meningitidis serogroup A (CPS-A), a mannose-containing carbohydrate, to enhance the antibody production against a co-administered model vaccine antigen, is examined. A protein-meningococcal serogroup C capsular polysaccharide (CPS-C) conjugate was selected as the model antigen for this study. After subcutaneous immunization of Balb/C mice, the conjugate mixed with CPS-A induced higher anti-CPS-C IgG and IgG(2a) antibody levels and higher anti-meningococcal serogroup C bactericidal titers than the conjugate alone or mixed with CPS-C. The immuno-stimulatory properties exhibited by CPS-A and the fact that vaccines based on purified CPS-A has been safely used during decades to fight the serogroup A meningococcal disease, support the proposal to use CPS-A as immune potentiator for human vaccination studies.


Assuntos
Adjuvantes Imunológicos/isolamento & purificação , Anticorpos Antibacterianos/imunologia , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/isolamento & purificação , Neisseria meningitidis Sorogrupo A/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Cápsulas Bacterianas/administração & dosagem , Atividade Bactericida do Sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neisseria meningitidis Sorogrupo A/química , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/imunologia , Distribuição Aleatória
9.
Biotechnol Appl Biochem ; 44(Pt 2): 101-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16420190

RESUMO

A simple, specific, sensitive and reproducible ELISA has been developed to quantify the level of CPS (capsular polysaccharide) production in supernatants of Streptococcus pneumoniae cell cultures. CPSs from Strep. pneumoniae have been widely used as vaccine antigens. The quantification method is based on two type-23F serotype-specific polyclonal antibodies: IgG, purified from sera of mice immunized with a pneumococcal type-23F CPS conjugate, used in the coating step, and a serotype-specific rabbit serum as the second antibody. Solutions of purified type-23F CPS were used as standards. The relationship between A(492) and type-23F CPS concentration was linear over the range 1-310 ng/ml (r=0.989), with 1 ng/ml as the lower limit of sensitivity. The specificity of ELISA was assessed because purified type-19F CPS and cell-wall polysaccharide samples were not detected after their evaluation by the ELISA described in the present study. Repeatability and intermediate precision of the assay were good, the coefficients of variation being 3 and 10% respectively. This ELISA allowed selection of an appropriate vaccine strain, for a natural polysaccharide vaccine, among several 23F pneumococcal clinical isolates and constituted a valuable analytical tool for Strep. pneumoniae fermentation and CPS purification follow-up.


Assuntos
Cápsulas Bacterianas/química , Ensaio de Imunoadsorção Enzimática/métodos , Meningite Pneumocócica/diagnóstico , Polissacarídeos Bacterianos/análise , Streptococcus pneumoniae/classificação , Animais , Cápsulas Bacterianas/biossíntese , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/isolamento & purificação , Reprodutibilidade dos Testes , Streptococcus pneumoniae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA