Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 112: 104669, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32028171

RESUMO

AIMS: This systematic review aimed to analyse: a) the presence and the abundance of Fusobacterium; b) the Fusobacterium species most often found, and c) the most common methods used for their identification in oral/head and neck cancer samples. DESIGN: A protocol was registered on PROSPERO database. This review was conducted following PRISMA guidelines. Literature search was performed on five electronic biomedical databases, namely Pubmed, Scopus, Web of Science, Embase, and Cochrane from their start dates to 30 August 2018. Two reviewers independently assessed the eligibility for inclusion; extracted the data; and evaluated the risk of bias. RESULTS: From 118 unique abstract records, 88 full-text articles were assessed for eligibility. According to inclusion and exclusion criteria, 17 publications were included in this review. Meta-analysis showed an increased prevalence of 6 % (95 % CI, 3-9) of Fusobacterium in tumour lesions than in non-tumour lesions (Fusobacterium prevalence of 16 % in tumour lesions and of 10 % in non-tumour lesions), and a 2.93 higher chance of Fusobacterium being present in tumour lesions (95 % CI, 1.47-5.81). The most common detection methods were based on molecular evidence (64.70 %) (95 % CI, 37.7-84.7). F. nucleatum was the most prevalent species (47.06 %) (95 % CI, 23.5-72). CONCLUSION: In conclusion, Fusobacterium is present and in higher abundance in oral/head and neck cancer samples when compared to non-cancer samples, suggesting that Fusobacterium may contribute to oral/head and neck cancer development.


Assuntos
Fusobacterium/isolamento & purificação , Neoplasias de Cabeça e Pescoço/microbiologia , Humanos
2.
PLoS One ; 9(3): e90629, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599031

RESUMO

The ß-dystroglycan (ß-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/ß1-recognised nuclear localization signal (NLS) of ß-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate ß-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits ß-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of ß-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of ß-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of ß-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of ß-DG, while disruption of the actin cytoskeleton led to a reduction in ß-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of ß-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of ß-DG, with the implication that ß-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell.


Assuntos
Citoesqueleto de Actina/metabolismo , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/fisiologia , Distroglicanas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Biotinilação , Linhagem Celular , Camundongos , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais , beta Carioferinas/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA