RESUMO
Parasitoids of three mealybug pests (Hemiptera: Pseudococcidae), Planococcus ficus (Signoret), Pseudococcus sociabilis Hambleton, and Pseudococcus viburni (Signoret) have been identified for the first time in Brazil. Mealybugs were collected in fruit-growing areas along southern Brazil during 2013-2016. An integrative approach, combining morphological and molecular methods, was used to identify the Brazilian parasitoids to the species level. Fifteen species were recorded, including 14 primary parasitoids belonging to Encyrtidae and Platygastridae and a single secondary parasitoid species belonging to Signiphoridae. The encyrtid parasitoids Acerophagus flavidulus (Brèthes), Anagyrus calyxtoi Noyes and Zaplatycerus sp., and the signiphorid secondary parasitoid Chartocerus axillaris De Santis are reported for the first time in Brazil.
Assuntos
Hemípteros , Himenópteros , Animais , Brasil , Frutas , Hemípteros/parasitologia , Himenópteros/anatomia & histologia , Himenópteros/classificaçãoRESUMO
Scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) are key pests of agricultural crops and ornamental plants worldwide. Their populations are difficult to control, even with insecticides, due to their cryptic habits. Moreover, there is growing concern over the use of synthetic pesticides for their control, due to deleterious environmental effects and the emergence of resistant populations of target pests. In this context, biological control may be an effective and sustainable approach. Hymenoptera Chalcidoidea includes natural enemies of scale insects that have been successfully used in many biological control programs. However, the correct identification of pest scale species and their natural enemies is particularly challenging because these insects are very small and highly specialized. Integrative taxonomy, coupling DNA barcoding and morphological analysis, has been successfully used to characterize pests and natural enemy species. In this study, we performed a survey of parasitoids and predators of armored and soft scales in Chile, based on 28S and COI barcodes. Fifty-three populations of Diaspididae and 79 populations of Coccidae were sampled over the entire length of the country, from Arica (18°S) to Frutillar (41°S), between January 2015 and February 2016. The phylogenetic relationships obtained by Bayesian inference from multilocus haplotypes revealed 41 putative species of Chalcidoidea, five Coccinellidae and three Neuroptera. Species delimitation was confirmed using ABGD, GMYC and PTP model. In Chalcidoidea, 23 species were identified morphologically, resulting in new COI barcodes for 12 species and new 28S barcodes for 14 species. Two predator species (Rhyzobius lophantae and Coccidophilus transandinus) were identified morphologically, and two parasitoid species, Chartocerus niger and Signiphora bifasciata, were recorded for the first time in Chile.
Assuntos
Código de Barras de DNA Taxonômico , Hemípteros/anatomia & histologia , Hemípteros/genética , Interações Hospedeiro-Parasita , Himenópteros/anatomia & histologia , Himenópteros/genética , Anacardiaceae/parasitologia , Animais , Teorema de Bayes , Chile , Haplótipos , Hemípteros/classificação , FilogeniaRESUMO
The present study aimed to characterize the distribution of mealybug species along Chilean agro-ecosystems and to determine the relative impact of host plant, management strategy, geography and micro-environment on shaping the distribution and genetic structure of the obscure mealybug Pseudococcus viburni. An extensive survey was completed using DNA barcoding methods to identify Chilean mealybugs to the species level. Moreover, a fine-scale study of Ps. viburni genetic diversity and population structure was carried out, genotyping 529 Ps. viburni individuals with 21 microsatellite markers. Samples from 16 localities were analyzed using Bayesian and spatially-explicit methods and the genetic dataset was confronted to host-plant, management and environmental data. Chilean crops were found to be infested by Ps. viburni, Pseudococcus meridionalis, Pseudococcus longispinus and Planococcus citri, with Ps. viburni and Ps. meridionalis showing contrasting distribution and host-plant preference patterns. Ps. viburni samples presented low genetic diversity levels but high genetic differentiation. While no significant genetic variance could be assigned to host-plant or management strategy, climate and geography were found to correlate significantly with genetic differentiation levels. The genetic characterization of Ps. viburni within Chile will contribute to future studies tracing back the origin and improving the management of this worldwide invader.