Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39064987

RESUMO

Excessive water hyacinth growth in aquatic environments and metanil yellow (MY) dye in industrial wastewater pose severe environmental and public health challenges. Therefore, this study evaluated the effects of various process factors on batch MY biosorption onto water hyacinth leaves (LECs) and MY biosorption kinetics, equilibrium, and thermodynamics. The optimal pH for MY biosorption by LECs was 1.5-2.0. The initial MY concentration affected the equilibrium MY biosorption capacity but not the LEC particle size and solution temperature. However, the LEC particle size and solution temperature affected the MY biosorption rate; the biosorption rate was higher at a lower particle size (0.15-0.3 mm) and a higher temperature (62 °C) than at higher particle sizes and lower temperatures. The pseudo-second-order model adequately described the biosorption kinetics of MY by LECs at the different levels of the process factors, whereas the Sips and Redlich-Peterson models satisfactorily represented the biosorption isotherm of MY. The Sips model predicted a maximum MY biosorption capacity of 170.8 mg g-1. The biosorption of MY by LECs was endothermic and not spontaneous. These findings demonstrate that LECs exhibit great potential for bioremediating MY-contaminated wastewater, thereby providing valuable insights for effective water treatment and pollution control strategies.

2.
Foods ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928890

RESUMO

There is a growing market for craft beverages with unique flavors. This study aimed to obtain a palate-pleasing mead derived from Pichia kudriavzevii 4A as a monoculture. Different culture media were evaluated to compare the fermentation kinetics and final products. The crucial factors in the medium were ~200 mg L-1 of yeast assimilable nitrogen and a pH of 3.5-5.0. A panel of judges favored the mead derived from Pichia kudriavzevii 4A (fermented in a medium with honey initially at 23 °Bx) over a commercial sample produced from Saccharomyces cerevisiae, considering its appearance, fruity and floral flavors (provided by esters, aldehydes, and higher alcohols), and balance between sweetness (given by the 82.91 g L-1 of residual sugars) and alcohol. The present mead had an 8.57% v/v ethanol concentration, was elaborated in 28 days, and reached a maximum biomass growth (2.40 g L-1) on the same fermentation day (6) that the minimum level of pH was reached. The biomass growth yield peaked at 24 and 48 h (~0.049 g g-1), while the ethanol yield peaked at 24 h (1.525 ± 0.332 g g-1), in both cases declining thereafter. The Gompertz model adequately describes the kinetics of sugar consumption and the generation of yeast biomass and ethanol. Pathogenic microorganisms, methanol, lead, and arsenic were absent in the mead. Thus, Pichia kudriavzevii 4A produced a safe and quality mead with probable consumer acceptance.

3.
Biomolecules ; 13(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759822

RESUMO

The yeast Hyphopichia wangnamkhiaoensis excretes a brilliant yellow fluorescent compound into its growth culture. In this study, we isolated and identified this compound using reverse-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) as well as 1H NMR and UV-Vis spectroscopy. Two of the three RP-HPLC-DAD methods used successfully separated the fluorescent compound and involved (1) a double separation step with isocratic flow elution, first on a C18 column and later on a cyano column, and (2) a separation with a linear gradient elution on a phenyl column. The wavelengths of maximum absorption of the fluorescent compound-containing HPLC fractions (~224, 268, 372, and 446 nm) are in good agreement with those exhibited by flavins. The 1H NMR spectra revealed methyl (δ 2.30 and 2.40) and aromatic proton (δ 7.79 and 7.77) signals of riboflavin. The 1H NMR spectra of the samples spiked with riboflavin confirmed that the brilliant yellow fluorescent compound is riboflavin. The maximum excitation and emission wavelengths of the fluorescent compound were 448 and 528 nm, respectively, which are identical to those of riboflavin.


Assuntos
Riboflavina , Saccharomyces cerevisiae , Cromatografia Líquida de Alta Pressão , Espectroscopia de Prótons por Ressonância Magnética , Prótons , Corantes , Vitaminas
4.
Plants (Basel) ; 12(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765386

RESUMO

Hexavalent chromium (Cr(VI)) contamination poses serious health and environmental risks. Chromium biosorption has been employed as an effective means of eradicating Cr(VI) contamination. However, research on chromium desorption from chromium-loaded biosorbents is scarce despite its importance in facilitating industrial-scale chromium biosorption. In this study, single- and two-stage chromium desorption from chromium-loaded Cupressus lusitanica bark (CLB) was conducted. Thirty eluent solutions were evaluated first; the highest single-stage chromium desorption efficiencies were achieved when eluent solutions of 0.5 M NaOH, 0.5 M H2SO4, and 0.5 M H2C2O4 were used. Subsequently, two-stage kinetic studies of chromium desorption were performed. The results revealed that using 0.5 M NaOH solution in the first stage and 0.5 M H2C2O4 in the second stage enabled the recovery of almost all the chromium initially bound to CLB (desorption efficiency = 95.9-96.1%) within long (168 h) and short (3 h) desorption periods at each stage. This study clearly demonstrated that the oxidation state of the recovered chromium depends on the chemical nature and concentration of the eluent solution. The results suggest the possible regeneration of chromium-loaded CLB for its subsequent use in other biosorption/desorption cycles.

5.
Toxins (Basel) ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37505739

RESUMO

Aluminosilicates are adsorbents able to bind mycotoxins, and their chemical modification increases their affinity to adsorb low-polarity mycotoxins. To further investigate if the inclusion of salts in bentonite modifies its adsorptive capacity, we studied T-2 toxin adsorption in natural bentonite (NB) and when modified with quaternary ammonium salts differing in polarity and chain length: myristyl trimethyl ammonium bromide (B14), cetyl trimethyl ammonium bromide (B16) and benzyl dimethyl stearyl ammonium chloride (B18). The results showed that quaternary salts made bentonite: displace monovalent (Na+1, K+1) and divalent (Mg+2, Ca+2) ions; reduce its porosity; change its compaction and structure, becoming more crystalline and ordered; and modify the charge balance of sheets. T-2 adsorption was higher in all modified materials compared to NB (p ≤ 0.0001), and B16 (42.96%) better adsorbed T-2 compared to B18 (35.80%; p = 0.0066). B14 (38.40%) showed no differences compared to B16 and B18 (p > 0.05). We described the T-2 adsorption mechanism in B16, in which hydrogen bond interactions, Van der Waals forces and the replacement of the salt by T-2 were found. Our results showed that interaction types due to the inclusion in B16 might be more important than the hydrocarbon chain length to improve the adsorptive capacity of bentonite.


Assuntos
Toxina T-2 , Poluentes Químicos da Água , Bentonita/química , Adsorção , Sais , Cátions , Poluentes Químicos da Água/química
6.
Microorganisms ; 11(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110400

RESUMO

There is an expanding market for beer of different flavors. This study aimed to prepare a craft Belgian-style pale ale with a non-Saccharomyces yeast. Pichia kudriavzevii 4A was used as a sole starter culture, and malted barley as the only substrate. The ingredients and brewing process were carefully monitored to ensure the quality and innocuousness of the beverage. During fermentation, the yeast consumed 89.7% of total sugars and produced 13.8% v/v of ethanol. The product was fermented and then aged for 8 days, adjusted to 5% v/v alcohol, and analyzed. There were no traces of mycotoxins, lead, arsenic, methanol, or microbiological contamination that would compromise consumer health. According to the physicochemical analysis, the final ethanol concentration (5.2% v/v) and other characteristics complied with national and international guidelines. The ethyl acetate and isoamyl alcohol present are known to confer sweet and fruity flavors. The sensory test defined the beverage as refreshing and as having an apple and pear flavor, a banana aroma, and a good level of bitterness. The judges preferred it over a commercial reference sample of Belgian-style pale ale made from S. cerevisiae. Hence, P. kudriavzevii 4A has the potential for use in the beer industry.

7.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641270

RESUMO

The conjugation of biomolecules to magnetic nanoparticles has emerged as promising approach in biomedicine as the treatment of several diseases, such as cancer. In this study, conjugation of bioactive peptide fractions from germinated soybeans to magnetite nanoparticles was achieved. Different fractions of germinated soybean peptides (>10 kDa and 5-10 kDa) were for the first time conjugated to previously coated magnetite nanoparticles (with 3-aminopropyltriethoxysilane (APTES) and sodium citrate) by the Ugi four-component reaction. The crystallinity of the nanoparticles was corroborated by X-ray diffraction, while the particle size was determined by scanning transmission electron microscopy. The analyses were carried out using infrared and ultraviolet-visible spectroscopy, dynamic light scattering, and thermogravimetry, which confirmed the coating and functionalization of the magnetite nanoparticles and conjugation of different peptide fractions on their surfaces. The antioxidant activity of the conjugates was determined by the reducing power and hydroxyl radical scavenging activity. The nanoparticles synthesized represent promising materials, as they have found applications in bionanotechnology for enhanced treatment of diseases, such as cancer, due to a higher antioxidant capacity than that of fractions without conjugation. The highest antioxidant capacity was observed for a >10 kDa peptide fraction conjugated to the magnetite nanoparticles coated with APTES.


Assuntos
Antioxidantes/farmacologia , Glycine max/química , Nanopartículas de Magnetita/química , Peptídeos/farmacologia , Antioxidantes/química , Sequestradores de Radicais Livres/química , Germinação , Tamanho da Partícula , Peptídeos/química , Propilaminas/química , Silanos/química , Citrato de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
8.
Sci Rep ; 11(1): 18413, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531491

RESUMO

In this work, the biosorption behavior of acid red 27 (AR27) dye using Eichhornia crassipes leaves (LECs) in a packed-bed column was investigated by varying relevant operational parameters and assessment of mathematical models. Results showed that the zero-charge point of LECs was 2.37 and that optima pH and volumetric flux of the influent solution for AR27 biosorption were 2.0 and [Formula: see text], respectively. The maximum specific and volumetric biosorption capacities were observed at influent AR27 concentrations and with LEC bed heights ranging between 50 and 400 mg/L and 2 and 8 cm, respectively. It was also found that if LEC bed height was increased and volumetric flux and AR27 concentration of the influent solution decreased, service and saturation time increased. Modeling results revealed that the Thomas, bed depth service time, Yoon-Nelson, dose-response, and logistic models accurately described the dynamic performance of the packed-bed column in terms of pH, AR27 concentration, and volumetric flux of influent AR27 solution, as well as that of LEC bed height. The findings revealed that LECs exhibited remarkable potential for the biosorption of AR27 from aqueous solutions in a packed-bed column and could potentially be useful for the treatment of AR27-laden wastewater.

9.
PLoS One ; 15(2): e0228595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027708

RESUMO

Acid orange 74 (AO74) is a chromium-complex monoazo acid dye widely used in the textile industry. Due to being highly toxic and non-biodegradable, it must be removed from polluted water to protect the health of people and the environment. The aim of this study was two-fold: to evaluate the biosorption of AO74 from an aqueous solution by utilizing HCl-pretreated Lemna sp. (HPL), and to examine dye desorption from the plant material. The maximum capacity of AO74 biosorption (64.24 mg g-1) was reached after 4 h at the most adequate pH, which was 2. The biosorption capacity decreased 25% (to 48.18 mg g-1) during the second biosorption/desorption cycle and remained essentially unchanged during the third cycle. The pseudo-second-order kinetics model concurred well with the experimental results of assays involving various levels of pH in the eluent solution and distinct initial concentrations of AO74. NaOH (0.01 M) was the best eluent solution. The Toth isotherm model best described AO74 biosorption equilibrium data. FTIR analysis confirmed the crucial role of HPL proteins in AO74 biosorption. SEM-EDX and CLSM techniques verified the effective biosorption/desorption of the dye during the three cycles. Therefore, HPL has potential for the removal of AO74 dye from wastewaters.


Assuntos
Araceae/metabolismo , Compostos Azo/isolamento & purificação , Biodegradação Ambiental , Corantes/isolamento & purificação , Adsorção , Compostos Azo/toxicidade , Corantes/toxicidade , Ácido Clorídrico , Concentração de Íons de Hidrogênio , Cinética , Indústria Têxtil , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/toxicidade
10.
Environ Sci Pollut Res Int ; 26(4): 3157-3173, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28963647

RESUMO

Solution pH appears to be the most important regulator of the biosorptive removal of chromium ions from aqueous solutions. This work presents a kinetic study of the effects of solution pH on Cr(VI) and total chromium removal from aqueous solution by Hass avocado shell (HAS) in batch and continuous packed bed column systems. Different Cr(VI) and total chromium removal performances of HAS were obtained in pH-shift batch, pH-controlled batch, and continuous systems. These results emphasize the great importance of determining the most appropriate pH for Cr(VI) and total chromium removal, considering the operational mode of the proposed large-scale treatment system. Total chromium biosorption batch kinetics was well described by the Elovich model, whereas in the continuous system, the fitness of the kinetic models to the experimental data was pH dependent. X-ray photoelectron spectroscopy and kinetic studies clearly indicated that the reaction mechanism of Cr(VI) with HAS was the reductive biotransformation of Cr(VI) to Cr(III), which was partially released to the aqueous solution and partially biosorbed onto HAS.


Assuntos
Cromo/análise , Persea/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Frutas/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Soluções , Águas Residuárias/química
11.
Ecotoxicology ; 25(10): 1832-1840, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670667

RESUMO

Nearly 7 00000 tons of dyes are produced annually throughout the world. Azo dyes are widely used in the textile and paper industries due to their low cost and ease of application. Their extensive use results in large volumes of wastewater being discharged into aquatic ecosystems. Large volume discharges constitute a health risk since many of these dyes, such as Congo Red, are elaborated with benzidine, a known carcinogenic compound. Information regarding dye toxicity in aquatic ecosystems is limited. Therefore, the aim of the present study was to evaluate the effect of Congo Red on survival and reproduction of Ceriodaphnia dubia. We determined the 48 h median lethal concentration (LC50) and evaluated the effects of sublethal concentrations in subchronic exposures by using as food either fresh algae or algae previously exposed to the dye. LC50 was 13.58 mg L-1. In subchronic assays, survival was reduced to 80 and 55 %, and fertility to 40 and 70 %, as compared to the control, in C. dubia fed with intoxicated cells or with the mix of intoxicated + fresh algae, respectively, so the quantity and type of food had a significant effect. We determined that Congo Red is highly toxic to C. dubia since it inhibits survival and fertility in concentrations exceeding 3 mg L-1. Our results show that this dye produces negative effects at very low concentrations. Furthermore, our findings warn of the risk associated with discharging dyes into aquatic environments. Lastly, the results emphasize the need to regulate the discharge of effluents containing azo dyes.


Assuntos
Cladocera/fisiologia , Vermelho Congo/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cladocera/efeitos dos fármacos , Dose Letal Mediana , Reprodução , Águas Residuárias
12.
Electron. j. biotechnol ; Electron. j. biotechnol;19(5): 12-20, Sept. 2016. ilus
Artigo em Inglês | LILACS | ID: lil-797332

RESUMO

Background: Methyl tert-butyl ether (MTBE) is a pollutant that causes deleterious effects on human and environmental health. Certain microbial cultures have shown the ability to degrade MTBE, suggesting that a novel bacterial species capable of degrading MTBE could be recovered. The goal of this study was to isolate, identify and characterize the members of a bacterial consortium capable of degrading MTBE. Results: The IPN-120526 bacterial consortium was obtained through batch enrichment using MTBE as the sole carbon and energy source. The cultivable fraction of the consortium was identified; of the isolates, only Stenotrophomonas maltophilia IPN-TD and Sphingopyxis sp. IPN-TE were capable of degrading MTBE. To the best of our knowledge, this report is the first demonstrating that S. maltophilia and Sphingopyxis sp. are capable of degrading MTBE. The degradation kinetics of MTBE demonstrated that S. maltophilia IPN-TD had a significantly higher overall MTBE degradation efficiency and rate (48.39 ± 3.18% and 1.56 ± 0.12 mg L-1 h-1, respectively) than the IPN-120526 consortium (38.59 ± 2.17% and 1.25 ± 0.087 mg L-1 respectively). The kinetics of MTBE removal by both cultures fit first-order and pseudo-first-order reaction models. Conclusions: These findings suggest that S. maltophilia IPN-TD in axenic culture has considerable potential for the detoxification of MTBE-contaminated water.


Assuntos
Microbiologia do Solo , Stenotrophomonas maltophilia/isolamento & purificação , Stenotrophomonas maltophilia/metabolismo , Éteres Metílicos/metabolismo , Biodegradação Ambiental , Gasolina , Cinética , Reação em Cadeia da Polimerase , Poluição Ambiental , Consórcios Microbianos , Éteres Metílicos/análise
13.
J Microbiol Methods ; 126: 48-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155258

RESUMO

An economic, simple, quantitative, and non-chromatographic method for the determination of alcohols using microdiffusion principle has been adapted and validated for acetone-butanol-ethanol (ABE) fermentation samples. This method, based on alcohols oxidation using potassium dichromate in acid medium, and detection by spectrophotometry, was evaluated varying, both, temperature (35°C, 45°C, and 55°C) and reaction time (0 to 125min). With a sample analysis time of 90min at 45°C, a limit of detection (LOD), and a limit of quantification (LOQ) of 0.10, and 0.40g/L, respectively. The proposed method has been successfully applied to determine butanol and ethanol concentrations in ABE fermentation samples with the advantage that multiple samples can be analyzed simultaneously. The measurements obtained with the proposed method were in good agreement with those obtained with the Gas Chromatography Method (GCM). This proposed method is useful for routine analysis of alcohols and screening samples in laboratories and industries.


Assuntos
Butanóis/análise , Clostridium acetobutylicum/metabolismo , Etanol/análise , Espectrofotometria/métodos , Biocombustíveis/análise , Cromatografia Gasosa/métodos , Difusão , Fermentação , Limite de Detecção , Espectrofotometria/instrumentação
14.
Environ Sci Pollut Res Int ; 22(14): 10811-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25772869

RESUMO

Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.


Assuntos
Chlorella vulgaris/metabolismo , Corantes/metabolismo , Vermelho Congo/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Animais , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Biodegradação Ambiental , Cladocera/efeitos dos fármacos , Corantes/toxicidade , Vermelho Congo/toxicidade , Daphnia/efeitos dos fármacos , Concentração Inibidora 50 , Indústria Têxtil , Testes de Toxicidade Aguda , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Purificação da Água
15.
J Environ Manage ; 152: 99-108, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617874

RESUMO

The present study explored the kinetics, equilibrium and thermodynamics of amaranth (acid red 27) anionic dye (AD) biosorption to water hyacinth leaves (LEC). The effect of LEC particle size, contact time, solution pH, initial AD concentration and temperature on AD biosorption was studied in batch experiments. AD biosorption increased with rising contact time and initial AD concentration, and with decreasing LEC particle size and solution pH. Pseudo-second-order chemical reaction kinetics provided the best correlation for the experimental data. Isotherm studies showed that the biosorption of AD onto LEC closely follows the Langmuir isotherm, with a maximum biosorption capacity of about 70 mg g(-1). The thermodynamic parameters confirm that AD biosorption by LEC is non-spontaneous and endothermic in nature. Results indicate that LEC is a strong biosorbent capable of effective detoxification of AD-laden wastewaters.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Eichhornia/metabolismo , Adsorção , Corante Amaranto , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Folhas de Planta/metabolismo , Termodinâmica , Eliminação de Resíduos Líquidos
16.
Appl Biochem Biotechnol ; 175(2): 1123-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25369894

RESUMO

Fluoranthene and pyrene are polycyclic aromatic hydrocarbons of high molecular weight that are recalcitrant and toxic to humans; therefore, their removal from the environment is crucial. From hydrocarbon-contaminated soil, 25 bacteria and 12 filamentous fungi capable of growth on pyrene and fluoranthene as the sole carbon and energy source were isolated. From these isolates, Ochrobactrum anthropi BPyF3 and Fusarium sp. FPyF1 were selected and identified because they grew quickly and abundantly in both hydrocarbons. Furthermore, O. anthropi BPyF3 and Fusarium sp. FPyF1 were most efficient at removing pyrene (50.39 and 51.32 %, respectively) and fluoranthene (49.85 and 49.36 %, respectively) from an initial concentration of 50 mg L(-1) after 7 days of incubation. Based on this and on the fact that there was no antagonism between the two microorganisms, a coculture composed of O. anthropi BPyF3 and Fusarium sp. FPyF1 was formed to remove fluoranthene and pyrene at an initial concentration of 100 mg L(-1) in a removal kinetic assay during 21 days. Fluoranthene removal by the coculture was higher (87.95 %) compared with removal from the individual cultures (68.95 % for Fusarium sp. FPyF1 and 64.59 % for O. anthropi BPyF3). In contrast, pyrene removal by the coculture (99.68 %) was similar to that obtained by the pure culture of Fusarium sp. FPyF1 (99.75 %). The kinetics of removal for both compounds was adjusted to a first-order model. This work demonstrates that the coculture formed by Fusarium sp. FPyF1 and O. anthropi BPyF3 has greater potential to remove fluoranthene than individual cultures; however, pyrene can be removed efficiently by Fusarium sp. FPyF1 alone.


Assuntos
Técnicas de Cocultura , Fluorenos/isolamento & purificação , Fluorenos/metabolismo , Fusarium/metabolismo , Ochrobactrum anthropi/metabolismo , Pirenos/isolamento & purificação , Pirenos/metabolismo , Biodegradação Ambiental , Meios de Cultura/química , Poluentes Ambientais/isolamento & purificação , Poluentes Ambientais/metabolismo , Fusarium/crescimento & desenvolvimento , Cinética , Ochrobactrum anthropi/crescimento & desenvolvimento
17.
Environ Monit Assess ; 186(10): 6207-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24880725

RESUMO

The ability of Quercus crassipes acorn shells (QCS) to remove Cr(VI) and total chromium from aqueous solutions was investigated as a function of the solution pH, ionic strength, and background electrolytes. It was found that Cr(VI) and total chromium removal by QCS depended strongly on the pH of the solution. Cr(VI) removal rate increased as the solution pH decreased. The optimum pH for total chromium removal varied depending on contact time. NaCl ionic strengths lower than 200 mM did not affect chromium removal. The presence of 20 mM monovalent cations and anions, and of divalent cations, slightly decreased the removal of Cr(VI) and total chromium by QCS; in contrast, divalent anions (SO4(2-), PO4(2-), CO3(2-)) significantly affected the removal of Cr(VI) and total chromium. The biosorption kinetics of chromium ions followed the pseudo-second-order model at all solution pH levels, NaCl ionic strengths and background electrolytes tested. Results suggest that QCS may be a potential low-cost biosorbent for the removal of Cr(VI) and total chromium from aqueous solutions containing various impurities.


Assuntos
Cromo/análise , Recuperação e Remediação Ambiental/métodos , Quercus/química , Poluentes Químicos da Água/análise , Cromo/química , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Concentração Osmolar , Poluentes Químicos da Água/química
18.
Bioresour Technol ; 140: 158-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23688667

RESUMO

The potential of microalgal oil from Scenedesmus incrassatulus as a feedstock for biodiesel production was studied. Cell concentration of S. incrassatulus and lipid content obtained during mixotrophic growth were 1.8 g/L and 19.5 ± 1.5% dry cell weight, respectively. The major components of biodiesel obtained from S. incrassatulus oil were methyl palmitate (26%) and methyl linoleate (49%), which provided a strong indication of high quality biodiesel. Fuel properties were determined by empirical equations and found to be within the limits of biodiesel standard ASTM D6751 and EN 14214. The quality properties of the biodiesel were high cetane number (62), low density (803 kg/m(3)), low viscosity (3.78 mm(2)/s), oxidation stability (9h) and cold filter plugging point (-4°C). Hence, S. incrassatulus has potential as a feedstock for the production of excellent quality biodiesel.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Lipídeos/biossíntese , Energia Renovável , Scenedesmus/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Modelos Teóricos , Óleos/metabolismo , Scenedesmus/crescimento & desenvolvimento
19.
Bioresour Technol ; 136: 635-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23567741

RESUMO

The potential of Litchi chinensis seeds (LCS) for biosorption of Ni(II) ions from aqueous solutions was investigated in batch systems in terms of kinetics, equilibrium and thermodynamics. Experimental data showed that the biosorption capacity of LCS was dependent on operating variables such as solution pH, initial Ni(II) concentration, contact time, and temperature. The optimum pH value for Ni(II) biosorption was 7.5. Significant enhancement of Ni(II) biosorption was observed by increasing initial metal concentration and temperature. Modeling of sorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetic model. Langmuir model exhibited the best fit to experimental data. According to this isotherm model, the maximum Ni(II) biosorption capacity of LCS is 66.62 mg g(-1). The calculated thermodynamic parameters showed that the biosorption of Ni(II) ions is an endothermic and non-spontaneous process. Results indicate that LCS can be used as an effective and environmentally friendly biosorbent to detoxify Ni(II)-polluted wastewaters.


Assuntos
Litchi/metabolismo , Níquel/isolamento & purificação , Sementes/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Soluções , Temperatura
20.
Appl Biochem Biotechnol ; 167(7): 2117-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22678824

RESUMO

A yeast isolate able to produce high levels of extracellular α-amylase was selected from a collection of 385 yeasts and identified as Wickerhamia sp. by the sequence of the D1/D2 domain of the 26 S rDNA gene. Part of the nucleotide sequence of the amy1-W gene was cloned, and a sequence of 191 amino acids deduced from this gene was analyzed. The peptide contains three characteristic well-conserved regions in the active sites of α-amylases (EC 3.2.1.1). The enzyme was purified and in situ activity showed only one band with amylolytic activity. The molecular mass of the α-amylase was estimated at 54 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Enzymatic activity on soluble starch as substrate was optimal at pH 5-6 and 50 °C. This thermostable enzyme was inhibited by EDTA-Na(2) and 1,10-phenanthroline; the activity of the dialyzed enzyme was reactivated with Ca(2+) and Mg(2+) cations, which indicates that the α-amylase is a metalloenzyme. α-Amylase production was induced by starch and maltose and repressed by glucose. The high yield and productivity found in this work makes this Wickerhamia sp. strain a promising candidate for the biotechnological production of α-amylase.


Assuntos
Ascomicetos/enzimologia , Espaço Extracelular/enzimologia , alfa-Amilases/biossíntese , Sequência de Aminoácidos , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Genes Fúngicos/genética , Cinética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Especificidade por Substrato , alfa-Amilases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA