Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 212, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358431

RESUMO

The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate. A cassette for constitutive expression of synos was introduced as a single insertion into the genome of P. koreensis MME3 using a miniTn7 system. The resulting recombinant strain MME3:SyNOS showed improved growth, motility, and biofilm formation. The impact of MME3:SyNOS inoculation on Brachypodium distachyon growth and N uptake and use efficiencies under different N availability situations was analyzed, in comparison to the control strain MME3:c. After 35 days of inoculation, plants treated with MME3:SyNOS had a higher root dry weight, both under semi-hydroponic and greenhouse conditions. At harvest, both MME3:SyNOS and MME3:c increased N uptake and use efficiency of plants grown under low N soil. Our results indicate that synos expression is a valid strategy to boost the phytostimulatory capacity of plant-associated bacteria and improve the adaptability of plants to N deficiency. KEY POINTS: • synos expression improves P. koreensis MME3 traits important for rhizospheric colonization • B. distachyon inoculated with MME3:SyNOS shows improved root growth • MME3 inoculation improves plant N uptake and use efficiencies in N-deficient soil.


Assuntos
Óxido Nítrico Sintase , Pseudomonas , Pseudomonas/genética , Agricultura , Solo
2.
Environ Microbiol ; 24(12): 5707-5720, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063363

RESUMO

Biofilms are essential for plant-associated bacteria to colonize their host. In this work, we analysed the interaction of Azospirillum baldaniorum Sp245 and Pseudomonas fluorescens A506 in mixed macrocolony biofilms. We identified certain culture conditions where A. baldaniorum Sp245 exploits P. fluorescens A506 to boost its growth. Azospirillum growth increased proportionally to the initial number of pseudomonads building the biofilm, which in turn were negatively affected in their growth. Physical contact with P. fluorescens A506 was essential for A. baldaniorum Sp245 growth increase. Biofilm ultrastructure analysis revealed that Pseudomonas produces a thick structure that hosts Azospirillum cells in its interior. Additional experimentation demonstrated that Azospirillum growth boost is compromised when interacting with biofilm-deficient Pseudomonas mutants, and that a low oxygen concentration strongly induce A. baldaniorum Sp245 growth, overriding Pseudomonas stimulation. In this line, we used a microaerophilia reporter strain of A. baldaniorum Sp245 to confirm that dual-species macrocolonies contain a higher number of cells under microaerophilic conditions. Taking all the results into consideration, we propose that A. baldaniorum Sp245 can benefit from P. fluorescens A506 partnership in mixed biofilms by taking advantage of the low oxygen concentration and scaffold made up of Pseudomonas-derived matrix, to expand its growth.


Assuntos
Azospirillum brasilense , Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Biofilmes , Pseudomonas/genética , Oxigênio
3.
Rev. argent. microbiol ; Rev. argent. microbiol;54(3): 21-30, set. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1407192

RESUMO

Abstract Biocontrol of the nematode Meloidogyne javanica was studied using the Argentinean strains Pseudomonas fluorescens MME3, TAE4, TAR5 and ZME4 and Bacillus sp. B7S, B9T and B19S. Pseudomonas protegens CHA0 was used as a positive control. Egg hatching and juvenile mortality were evaluated in vitro by exposure of nematodes to bacterial suspensions or their cell-free supernatants (CFS). The effect of bacteria on nematode infestation of lettuce was also studied. results showed that most of the tested strains and CFS reduced egg hatching and juvenile survival in vitro. The bacterial suspension of Bacillus sp. B9T produced the lowest hatching of eggs. Juvenile mortality was higher when M. javanica was exposed to Bacillus sp. than to Pseudomonas spp. suspensions. Except for CFS of B9T, all filtrates inhibited hatching at levels similar to or higher than the biocontrol strain P. protegens CHA0. The CFS of CHA0 showed the highest level of juvenile mortality followed by Bacillus sp. strains and P. fluorescens TAE4. None of the inoculated rhizobacteria reverted the negative effect of infestation on the aerial dry weight of lettuce plants. However, inoculation impacted on reproduction of M. javanica by reducing the development of galls and egg masses on roots and diminishing the number of individuals both on roots and in the substrate, as well as the reproduction factor. These results show that most of the analyzed native strains can control the nematode M. javanica. Among them, P. fluorescens TAE4 and Bacillus sp. B9T showed the most promising performances for the biocontrol of this pathogen and have a potential use in the formulation of commercial products.


Resumen Se estudiaron las cepas argentinas Pseudomonas fluorescens MME3, TAE4, TAR5 y ZME4 y Bacillus sp. B7S, B9T y B19S para el control del nematodo Meloidogyne javanica. Pseudomonas protegens CHA0 se utilizó como control positivo. La eclosión de huevos y la mortalidad de juveniles se evaluaron in vitro al exponerlos a suspensiones bacterianas y a sus sobrenadantes libres de células (SLC). Asimismo, se estudió la inoculación bacteriana sobre la infestación del nematodo en lechuga. Los resultados in vitro indicaron que la mayoría de las cepas, así como sus SLC redujeron la eclosión y la supervivencia de M. javanica. La suspensión de Bacillus sp. B9T produjo los menores niveles de eclosión. La mortalidad de juveniles fue mayor al exponerlos a suspensiones de Bacillus sp. respecto de Pseudomonas spp. Los SLC inhibieron la eclosión de huevos en niveles similares o superiores a P. protegens CHA0, excepto por el de B9T. La exposición a SLC de CHA0 registró la mayor mortalidad, seguido por las cepas de Bacillus sp. y P. fluorescens TAE4. La inoculación bacteriana no revertió el efecto de la infestación sobre el peso seco aéreo de las plantas, sin embargo, afectó la multiplicación de M. javanica lo que redujo el desarrollo de agallas y las masas de huevos, y disminuyó el número de individuos presentes tanto en la raíz como en el sustrato, así como el factor de reproducción. Los resultados indican que la mayoría de las cepas nativas evaluadas son capaces de controlar a M. javanica. Entre ellas, P. fluorescens TAE4 y Bacillus sp. B9T, se presentan como las más promisorias para el control de este patógeno, con potencialidad para ser utilizadas en la formulación de productos biológicos.

4.
Rev Argent Microbiol ; 54(3): 224-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33947589

RESUMO

Biocontrol of the nematode Meloidogyne javanica was studied using the Argentinean strains Pseudomonas fluorescens MME3, TAE4, TAR5 and ZME4 and Bacillus sp. B7S, B9T and B19S. Pseudomonas protegens CHA0 was used as a positive control. Egg hatching and juvenile mortality were evaluated in vitro by exposure of nematodes to bacterial suspensions or their cell-free supernatants (CFS). The effect of bacteria on nematode infestation of lettuce was also studied. results showed that most of the tested strains and CFS reduced egg hatching and juvenile survival in vitro. The bacterial suspension of Bacillus sp. B9T produced the lowest hatching of eggs. Juvenile mortality was higher when M. javanica was exposed to Bacillus sp. than to Pseudomonas spp. suspensions. Except for CFS of B9T, all filtrates inhibited hatching at levels similar to or higher than the biocontrol strain P. protegens CHA0. The CFS of CHA0 showed the highest level of juvenile mortality followed by Bacillus sp. strains and P. fluorescens TAE4. None of the inoculated rhizobacteria reverted the negative effect of infestation on the aerial dry weight of lettuce plants. However, inoculation impacted on reproduction of M. javanica by reducing the development of galls and egg masses on roots and diminishing the number of individuals both on roots and in the substrate, as well as the reproduction factor. These results show that most of the analyzed native strains can control the nematode M. javanica. Among them, P. fluorescens TAE4 and Bacillus sp. B9T showed the most promising performances for the biocontrol of this pathogen and have a potential use in the formulation of commercial products.


Assuntos
Bacillus , Solanum lycopersicum , Tylenchoidea , Animais , Argentina , Humanos , Lactuca , Solanum lycopersicum/microbiologia , Controle Biológico de Vetores/métodos , Tylenchoidea/microbiologia
5.
Syst Appl Microbiol ; 43(6): 126130, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32882650

RESUMO

Azospirillum brasilense Az19 is a plant-beneficial bacterium capable of protecting plants from the negative effects of drought. The objective of this study was to determine and analyze the genomic sequence of strain Az19 as a means of identifying putative stress-adaptation mechanisms. A high-quality draft genome of ca. 7 Mb with a predicted coding potential of 6710 genes was obtained. Phylogenomic analyses confirmed that Az19 belongs to the brasilense clade and is closely related to strains Az39 and REC3. Functional genomics revealed that the denitrification pathway of Az19 is incomplete, which was in agreement with a reduced growth on nitrate under low O2 concentrations. Putative genes of the general stress response and oxidative stress-tolerance, as well as synthesis of exopolysaccharides, carotenoids, polyamines and several osmolytes, were detected. An additional poly-beta-hydroxybutyrate (PHB) synthase coding gene was found in Az19 genome, but the accumulation of PHB did not increase under salinity. The detection of exclusive genes related to DNA repair led to discover that strain Az19 also has improved UV-tolerance, both in vitro and in planta. Finally, the analysis revealed the presence of multiple kaiC-like genes, which could be involved in stress-tolerance and, possibly, light responsiveness. Although A. brasilense has been a model for the study of beneficial plant-associated rhizobacteria, the evidence collected in this current study suggests, for the first time in this bacterial group, an unexpected possibility of adaptation to the phyllosphere.


Assuntos
Adaptação Fisiológica , Azospirillum brasilense/genética , Genoma Bacteriano , Folhas de Planta/microbiologia , Azospirillum brasilense/fisiologia , Desnitrificação/genética , Secas , Hidroxibutiratos/metabolismo , Anotação de Sequência Molecular , Filogenia , Raízes de Plantas/microbiologia , Triticum/microbiologia , Zea mays/microbiologia
6.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299474

RESUMO

Bacteria of the Azospirillum and Pseudomonas genera are ubiquitous members of the rhizosphere, where they stimulate plant growth. Given the outstanding capacity of pseudomonads to antagonize other microorganisms, we analyzed the interaction between these two bacterial groups to identify determinants of their compatibility. We could establish that, when in direct contact, certain Pseudomonas strains produce lethality on Azospirillum brasilense cells using an antibacterial type 6 secretion system. When analyzing the effect of Pseudomonas spp. diffusible metabolites on A. brasilense growth on King's B medium, we detected strong inhibitory effects, mostly mediated by siderophores. On Congo Red medium, both inhibitory and stimulatory effects were induced by unidentified compounds. Under this condition, Pseudomonas protegens CHA0 produced a Gac/Rsm-regulated antibiotic which specifically inhibited A. brasilense Sp7 but not Sp245. This effect was not associated with the production of 2,4-diacetylphloroglucinol. The three identified antagonism determinants were also active in vivo, producing a reduction of viable cells of A. brasilense in the roots of wheat seedlings when co-inoculated with pseudomonads. These results are relevant to the understanding of social dynamics in the rhizosphere and might aid in the selection of strains for mixed inoculants.


Assuntos
Antibiose/fisiologia , Azospirillum brasilense/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pseudomonas/metabolismo , Azospirillum brasilense/metabolismo , Rizosfera , Plântula/microbiologia , Sideróforos/metabolismo , Triticum/microbiologia , Sistemas de Secreção Tipo VI/fisiologia
9.
FEMS Microbiol Lett ; 363(20)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27742715

RESUMO

Plant-growth-promoting bacteria belonging to Azospirillum and Pseudomonas genera are major inhabitants of the rhizosphere. Both are increasingly commercialized as crops inoculants. Interspecific interaction in the rhizosphere is critical for inoculants aptness. The objective of this work was to evaluate Azospirillum and Pseudomonas interaction in mixed biofilms by co-cultivation of the model strains Azospirillum brasilense Sp245 and Pseudomonas protegens CHA0. The results revealed enhanced growth of both strains when co-cultured in static conditions. Moreover, Sp245 biofilm formed in plastic surfaces was increased 2-fold in the presence of CHA0. Confocal microscopy revealed highly structured mixed biofilms showing Sp245 mainly on the bottom and CHA0 towards the biofilm surface. In addition, A. brasilense biofilm was thicker and denser when co-cultured with P. protegens. In a colony-colony interaction assay, Sp245 changed nearby CHA0 producing small colony phenotype, which accounts for a diffusible metabolite mediator; though CHA0 spent medium did not affect Sp245 colony phenotype. Altogether, these results point to a cooperative interaction between A. brasilense Sp245 and P. protegens CHA0 in which both strains increase their static growth and produce structured mixed biofilms with a strain-specific distribution.


Assuntos
Azospirillum brasilense/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Plantas/microbiologia , Pseudomonas/crescimento & desenvolvimento , Microbiologia do Solo , Azospirillum brasilense/metabolismo , Técnicas de Cocultura , Raízes de Plantas/microbiologia , Pseudomonas/metabolismo , Rizosfera
10.
FEMS Microbiol Lett ; 338(1): 77-85, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23082946

RESUMO

Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245.


Assuntos
Azospirillum brasilense/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Nitrato Redutase/genética , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Biofilmes/efeitos dos fármacos , Meios de Cultura/química , Desnitrificação , Regulação Bacteriana da Expressão Gênica , Mutação , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/farmacologia , Periplasma , Raízes de Plantas/crescimento & desenvolvimento , Compostos de Amônio Quaternário/metabolismo , Transdução de Sinais
11.
Plant Physiol Biochem ; 48(1): 62-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19875302

RESUMO

We previously reported that Azospirillum brasilense induced a more elastic cell wall and a higher apoplastic water fraction in both wheat coleoptile and flag leaf. These biophysical characteristics could permit increased growth. Knowledge of the biochemical effects the bacteria could elicit in plant cell walls and how these responses change plant physiology is still scarce. The objective of this work was to analyze whether A. brasilense Sp245 inoculation affected elongation and extensibility of growing cucumber (Cucumis sativus) hypocotyls and ionically bound cell wall peroxidase activities. Hypocotyl tip and basal segments were excised from A. brasilense Sp245-inoculated cucumber seedlings growing in darkness under hydroponic conditions. Elongation, cell wall extensibility, cell wall peroxidase activities against ferulic acid and guaiacol and NADH oxidase activities were analyzed. Azospirillum-inoculated cucumber seedlings grew bigger than non-inoculated ones. Dynamic cell wall differences were detected between inoculated and non-inoculated hypocotyls. They included greater acid-induced cell wall extension and in vivo elongation when incubated in distilled water. Although there was no difference between treatments in either region of the hypocotyl NADH oxidase and ferulic acid peroxidase activities were lower in both regions in inoculated seedlings. These lesser activities could be delaying the stiffening of cell wall in inoculated seedlings. These results showed that the cell wall is a target for A. brasilense growth promotion.


Assuntos
Azospirillum brasilense , Parede Celular/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Hipocótilo/citologia , Parede Celular/microbiologia , Ácidos Cumáricos/metabolismo , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , Escuridão , Guaiacol/metabolismo , Hipocótilo/microbiologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Peroxidases/metabolismo , Plântula
12.
Planta ; 221(2): 297-303, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15824907

RESUMO

Azospirillum spp. is a well known plant-growth-promoting rhizobacterium. Azospirillum-inoculated plants have shown to display enhanced lateral root and root hair development. These promoting effects have been attributed mainly to the production of hormone-like substances. Nitric oxide (NO) has recently been described to act as a signal molecule in the hormonal cascade leading to root formation. However, data on the possible role of NO in free-living diazotrophs associated to plant roots, is unavailable. In this work, NO production by Azospirillum brasilense Sp245 was detected by electron paramagnetic resonance (6.4 nmol. g-1 of bacteria) and confirmed by the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2 DA). The observed green fluorescence was significantly diminished by the addition of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Azospirillum-inoculated and noninoculated tomato (Lycopersicon esculentum L.) roots were incubated with DAF-2 DA and examined by epifluorescence microscopy. Azospirillum-inoculated roots displayed higher fluorescence intensity which was located mainly at the vascular tissues and subepidermal cells of roots. The Azospirillum-mediated induction of lateral root formation (LRF) appears to be NO-dependent since it was completely blocked by treatment with cPTIO, whereas the addition of the NO donor sodium nitroprusside partially reverted the inhibitory effect of cPTIO. Overall, the results strongly support the participation of NO in the Azospirillum-promoted LRF in tomato seedlings.


Assuntos
Azospirillum brasilense/fisiologia , Óxido Nítrico/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Azospirillum brasilense/metabolismo , Óxido Nítrico/biossíntese , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA