Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(18): 10953-10963, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913458

RESUMO

Four amphiphilic peptides were synthesized, characterized, and evaluated regarding their efficiency in the catalysis of direct aldol reactions in water. The lipopeptides differ by having a double lipid chain and a guanidinium pyrrole group functionalizing one Lys side chain. All the samples are composed of the amino acids l-proline (P), l-arginine (R), or l-lysine (K) functionalized with the cationic guanidiniocarbonyl pyrrole unit (GCP), l-tryptophan (W), and l-glycine (G), covalently linked to one or two long aliphatic chains, leading to surfactant-like designs with controlled proline protonation state and different stereoselectivity. Critical aggregation concentrations (cac) were higher in the presence of the GCP group, suggesting that self-assembly depends on charge distribution along the peptide backbone. Cryogenic Transmission Electron Microscopy (Cryo-TEM) and Small Angle X-ray Scattering (SAXS) showed a rich polymorphism including spherical, cylindrical, and bilayer structures. Molecular dynamics simulations performed to assess the lipopeptide polymorphs revealed an excellent agreement with core-shell arrangements derived from SAXS data and provided an atomistic view of the changes incurred by modifying head groups and lipid chains. The resulting nanostructures behaved as excellent catalysts for aldol condensation reactions, in which superior conversions (>99%), high diastereoselectivities (ds = 94 : 6), and enantioselectivities (ee = 92%) were obtained. Our findings contribute to elucidate the effect of nanoscale organization of lipopeptide assemblies in the catalysis of aldol reactions in an aqueous environment.


Assuntos
Aldeídos/química , Lipopeptídeos/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Conformação Molecular , Simulação de Dinâmica Molecular , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
2.
J Chem Phys ; 154(4): 044106, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514105

RESUMO

Methylene blue [3,7-Bis(di-methylamino) phenothiazin-5-ium chloride] is a phenothiazine dye with applications as a sensitizer for photodynamic therapy, photoantimicrobials, and dye-sensitized solar cells. Time-dependent density functional theory (TDDFT), based on (semi)local and global hybrid exchange-correlation functionals, fails to correctly describe its spectral features due to known limitations for describing optical excitations of π-conjugated systems. Here, we use TDDFT with a non-empirical optimally tuned range-separated hybrid functional to explore the optical excitations of gas phase and solvated methylene blue. We compute solvated configurations using molecular dynamics and an iterative procedure to account for explicit solute polarization. We rationalize and validate that by extrapolating the optimized range separation parameter to an infinite amount of solvating molecules, the optical gap of methylene blue is well described. Moreover, this method allows us to resolve contributions from solvent-solute intermolecular interactions and dielectric screening. We validate our results by comparing them to first-principles calculations based on the GW+Bethe-Salpeter equation approach and experiment. Vibronic calculations using TDDFT and the generating function method account for the spectra's subbands and bring the computed transition energies to within 0.15 eV of the experimental data. This methodology is expected to perform equivalently well for describing solvated spectra of π-conjugated systems.

3.
Molecules ; 23(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883373

RESUMO

Excited state intramolecular proton transfer (ESIPT) is a photoinduced process strongly associated to hydrogen bonding within a molecular framework. In this manuscript, we computed potential energy data using Time Dependent Density Functional Theory (TDDFT) for triphenyl-substituted heterocycles, which evidenced an energetically favorable proton transfer on the excited state (i.e., ESIPT) but not on the ground state. Moreover, we describe how changes on heterocyclic functionalities, based on imidazole, oxazole, and thiazole systems, affect the ESIPT process that converts an enolic species to a ketonic one through photon-induced proton transfer. Structural and photophysical data were obtained theoretically by means of density functional theory (DFT) calculations and contrasted for the three heterocyclics. Different functionals were used, but B3LYP was the one that adequately predicted absorption data. It was observed that the intramolecular hydrogen bond is strengthened in the excited state, supporting the occurrence of ESIPT. Finally, it was observed that, with the formation of the excited state, there is a decrease in electronic density at the oxygen atom that acts as proton donor, while there is a substantial increase in the corresponding density at the nitrogen atom that serves as proton acceptor, thus, indicating that proton transfer is indeed favored after photon absorption.


Assuntos
Imidazóis/química , Modelos Moleculares , Oxazóis/química , Prótons , Tiazóis/química , Ligação de Hidrogênio , Cetonas/química , Luz , Nitrogênio/química , Processos Fotoquímicos , Termodinâmica
4.
Phys Chem Chem Phys ; 18(10): 7242-50, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26891224

RESUMO

The low toxicity and environmentally compatible ionic liquids (ILs) are alternatives to the toxic and harmful cyanide-based baths used in industrial silver electrodeposition. Here, we report the successful galvanostatic electrodeposition of silver films using the air and water stable ILs 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIM]TfO) and 1-H-3-methylimidazolium hydrogen sulphate ([HMIM(+)][HSO4(-)]) as solvents and AgTfO as the source of silver. The electrochemical deposition parameters were thoughtfully studied by cyclic voltammetry before deposition. The electrodeposits were characterized by scanning electron microscopy coupled with X-ray energy dispersive spectroscopy and X-ray diffraction. Molecular dynamics (MD) simulations were used to investigate the structural dynamic and energetic properties of AgTfO in both ILs. Cyclic voltammetry experiments revealed that the reduction of silver is a diffusion-controlled process. The morphology of the silver coatings obtained in [EMIM]TfO is independent of the applied current density, resulting in nodular electrodeposits grouped as crystalline clusters. However, the current density significantly influences the morphology of silver electrodeposits obtained in [HMIM(+)][HSO4(-)], thus evolving from dendrites at 15 mA cm(-2) to the coexistence of dendrites and columnar shapes at 30 mA cm(-2). These differences are probably due to the greater interaction of Ag(+) with [HSO4(-)] than with TfO(-), as indicated by the MD simulations. The morphology of Ag deposits is independent of the electrodeposition temperature for both ILs, but higher values of temperature promoted increased cluster sizes. Pure face-centred cubic polycrystalline Ag was deposited on the films with crystallite sizes on the nanometre scale. The morphological dependence of Ag electrodeposits obtained in the [HMIM(+)][HSO4(-)] IL on the current density applied opens up the opportunity to produce different and predetermined Ag deposits.

5.
J Photochem Photobiol B ; 150: 31-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25862463

RESUMO

Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions. The antimicrobial efficiency of MB (30 µM) either in water or in 2M aqueous urea solution was tested against a fungus (Candida albicans). Samples were kept in the dark and irradiation was performed with a light emitting diode (λ = 645 nm). Without urea, 9 min of irradiation was needed to achieve complete microbial eradication. In urea solution, complete eradication was obtained with 6 min illumination (light energy of 14.4 J). The higher efficiency of MB/urea solution was correlated with a smaller concentration of dimers, even in the presence of the microorganisms. Monomer to dimer concentration ratios were extracted from the absorption spectra of MB solutions measured as a function of MB concentration at different temperatures and at different concentrations of sodium chloride and urea. Dimerization equilibrium decreased by 3 and 6 times in 1 and 2M urea, respectively, and increased by a factor of 6 in 1M sodium chloride. The destabilization of aggregates by urea seems to be applied to other photosensitizers, since urea also destabilized aggregation of Meso-tetra(4-n-methyl-pyridyl)porphyrin, which is a positively charged porphyrin. We showed that urea destabilizes MB aggregates mainly by causing a decrease in the enthalpic gain of dimerization, which was exactly the opposite of the effect of sodium chloride. In order to understand this phenomenon at the molecular level, we computed the free energy for the dimer association process (ΔG(dimer)) in aqueous solution as well as its enthalpic component in aqueous and in aqueous/urea solutions by molecular dynamics simulations. In 2M-urea solution the atomistic picture revealed a preferential solvation of MB by urea compared with MB dimers while changes in ΔH(dimer) values demonstrated a clear shift favoring MB monomers. Therefore, MB monomers are more stable in urea solutions, which have significantly better photophysics and higher antimicrobial activity. This information can be of use for dental and medical professionals that are using MB based APDT protocols.


Assuntos
Candida albicans/efeitos dos fármacos , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Ureia/farmacologia , Candida albicans/crescimento & desenvolvimento , Luz , Azul de Metileno/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Ureia/química
6.
J Phys Chem B ; 117(3): 733-40, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23286315

RESUMO

We report for the first time on the self-assembly of nanostructures composed exclusively of alternating positively charged and hydrophobic amino acids. A novel arginine/phenylalanine octapeptide, RF8, was synthesized. Because the low hydrophobicity of this sequence makes its spontaneous ordering through solution-based methods difficult, a recently proposed solid-vapor approach was used to obtain nanometric architectures on ITO/PET substrates. The formation of the nanostructures was investigated under different preparation conditions, specifically, under different gas-phase solvents (aniline, water, and dichloromethane), different peptide concentrations in the precursor solution, and different incubation times. The stability of the assemblies was experimentally studied by electron microscopy and thermogravimetric analysis coupled with mass spectrometry. The secondary structure was assessed by infrared and Raman spectroscopy, and the arrays were found to assume an antiparallel ß-sheet conformation. FEG-SEM images clearly reveal the appearance of fibrillar structures that form extensive homogeneously distributed networks. A close relationship between the morphology and preparation parameters was found, and a concentration-triggered mechanism was suggested. Molecular dynamics simulations were performed to address the thermal stability and nature of intermolecular interactions of the putative assembly structure. Results obtained when water is considered as solvent shows that a stable lamellar structure is formed containing a thin layer of water in between the RF8 peptides that is stabilized by H-bonding.


Assuntos
Dipeptídeos/química , Gases/química , Nanoestruturas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Estrutura Secundária de Proteína , Solventes/química , Temperatura , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA