Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 273, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559134

RESUMO

BACKGROUND: The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin's receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differentially expressed genes coding Cqm1, lipases, proteases and other genes involved in lipid and carbohydrate metabolism. This study aimed to investigate the metabolic features of Bin-resistant individuals by comparing the activity of some enzymes, energy reserves, fertility and fecundity to a susceptible strain. METHODS: The activity of specific enzymes was recorded in midgut samples from resistant and susceptible larvae. The amount of lipids and reducing sugars was determined for larvae and adults from both strains. Additionally, the fecundity and fertility parameters of these strains under control and stress conditions were examined. RESULTS: Enzyme assays showed that the esterase activities in the midgut of resistant larvae were significantly lower than susceptible ones using acetyl-, butyryl- and heptanoyl-methylumbelliferyl esthers as substrates. The α-glucosidase activity was also reduced in resistant larvae using sucrose and a synthetic substrate. No difference in protease activities as trypsins, chymotrypsins and aminopeptidases was detected between resistant and susceptible larvae. In larval and adult stages, the resistant strain showed an altered profile of energy reserves characterized by significantly reduced levels of lipids and a greater amount of reducing sugars. The fertility and fecundity of females were similar for both strains, indicating that those changes in energy reserves did not affect these reproductive parameters. CONCLUSIONS: Our dataset showed that Bin-resistant insects display differential metabolic features co-selected with the phenotype of resistance that can potentially have effects on mosquito fitness, in particular, due to the reduced lipid accumulation.


Assuntos
Bacillus , Toxinas Bacterianas , Culex , Animais , Feminino , Toxinas Bacterianas/metabolismo , Culex/metabolismo , Lipídeos , Larva/genética
2.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681561

RESUMO

Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be transmitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development is the composition of the bacterial gut microbiota in the triatomine. Herein, we analyzed the humoral immune responses of R. prolixus nymphs treated with antibiotics and subsequently recolonized with either Serratia marcescens or Rhodococcus rhodnii. The treatment with antibiotics reduced the bacterial load in the digestive tract, and the recolonization with each bacterium was successfully detected seven days after treatment. The antibiotic-treated insects, recolonized with S. marcescens, presented reduced antibacterial activity against Staphylococcus aureus and phenoloxidase activity in hemolymph, and lower nitric oxide synthase (NOS) and higher defensin C gene (DefC) gene expression in the fat body. These insects also presented a higher expression of DefC, lower prolixicin (Prol), and lower NOS levels in the anterior midgut. However, the antibiotic-treated insects recolonized with R. rhodnii had increased antibacterial activity against Escherichia coli and lower activity against S. aureus, higher phenoloxidase activity in hemolymph, and lower NOS expression in the fat body. In the anterior midgut, these insects presented higher NOS, defensin A (DefA) and DefC expression, and lower Prol expression. The R. prolixus immune modulation by these two bacteria was observed not only in the midgut, but also systemically in the fat body, and may be crucial for the development and transmission of the parasites Trypanosoma cruzi and Trypanosoma rangeli.


Assuntos
Antibacterianos/uso terapêutico , Rhodnius/microbiologia , Rhodococcus/imunologia , Serratia marcescens/imunologia , Animais , Antibacterianos/farmacologia , Defensinas/metabolismo , Corpo Adiposo/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Humoral , Proteínas de Insetos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Óxido Nítrico Sintase/metabolismo , Rhodnius/efeitos dos fármacos , Rhodnius/imunologia , Rhodnius/metabolismo , Staphylococcus aureus/fisiologia
3.
Pest Manag Sci ; 77(7): 3135-3144, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644981

RESUMO

BACKGROUND: Culex quinquefasciatus resistance to the binary toxin from Lysinibacillus sphaericus larvicides can occur because of mutations in the cqm1 gene that prevents the expression of the toxin receptor, Cqm1 α-glucosidase. In a resistant laboratory-selected colony maintained for more than 250 generations, cqm1REC and cqm1REC-2 resistance alleles were identified. The major allele initially found, cqm1REC , became minor and was replaced by cqm1REC-2 . This study aimed to investigate the features associated with homozygous larvae for each allele to understand the reasons for the allele replacement and to generate knowledge on resistance to microbial larvicides. RESULTS: Homozygous larvae for each allele were compared. Both larvae displayed the same level of resistance to the binary toxin (3500-fold); therefore, a change in phenotype was not the reason for the replacement observed. The lack of Cqm1 expression did not reduce the total specific α-glucosidase activity for homozygous cqm1REC and cqm1REC-2 larvae, which were statistically similar to the susceptible strain, using artificial or natural substrates. The expression of eight Cqm1 paralog α-glucosidases was demonstrated in resistant and susceptible larvae. Bioassays in which cqm1REC or cqm1REC-2 homozygous larvae were reared under stressful conditions showed that most adults produced were cqm1REC-2 homozygous (69%). Comparatively, in the offspring of a heterozygous sub-colony reared under optimal conditions for 20 generations, the cqm1REC allele assumed a higher frequency (0.72). CONCLUSION: Homozygous larvae for each allele exhibited a similar resistant phenotype. However, they presented specific advantages that might favor their selection and can be used in designing resistance management practices. © 2021 Society of Chemical Industry.


Assuntos
Toxinas Bacterianas , Culex , Proteínas de Insetos/genética , alfa-Glucosidases/genética , Alelos , Animais , Bacillaceae , Culex/enzimologia , Culex/genética , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA