Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Hematol Oncol Stem Cell Ther ; 17(2): 120-129, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38560971

RESUMO

BACKGROUND AND OBJECTIVES: Bone marrow mesenchymal stromal cells (BM-MSCs) are key elements of the hematopoietic niche and participate in the regulatory mechanisms of hematopoietic stem cells (HSCs). Hematological diseases can affect MSCs and their functions. However, the dysregulations caused by sickle cell disease (SCD) are not fully elucidated. This work explored changes in BM-MSCs and their relationship with age using sickle cell mice (Townes-SS). MATERIALS AND METHODS: BM-MSCs were isolated from Townes-SS, and control groups 30- and 60-day-old Townes-AA and C57BL/6 J. RESULTS: The BM-MSCs showed no morphological differences in culture and demonstrated a murine MSC-like immunophenotypic profile (Sca-1+, CD29+, CD44+, CD90.2+, CD31-, CD45-, and CD117-). Subsequently, all BM-MSCs were able to differentiate into adipocytes and osteocytes in vitro. Finally, 30-day-old BM-MSCs of Townes-SS showed higher expression of genes related to the maintenance of HSCs (Cxcl12, Vegfa, and Angpt1) and lower expression of pro-inflammatory genes (Tnfa and Il-6). However, 60-day-old BM-MSCs of Townes-SS started to show expression of genes related to reduced HSC maintenance and increased expression of pro-inflammatory genes. CONCLUSION: These results indicates age as a modifying factor of gene expression of BM-MSCs in the context of SCD.


Assuntos
Anemia Falciforme , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Medula Óssea , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular
2.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(2): 156-164, Apr.-June 2021. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1286679

RESUMO

ABSTRACT Introduction Sickle cell disease (SCD) is a monogenic disease and it is estimated that 300,000 infants are born annually with it. Most treatments available are only palliative, whereas the allogeneic hematopoietic stem cell transplantation offers the only potential cure for SCD. Objective Generation of human autologous cells, when coupled with induced pluripotent stem cell (iPSC) technology, is a promising approach for developing study models. In this study, we provide a simple and efficient model for generating hematopoietic cells using iPSCs derived from a sickle cell anemia patient and an inexpensive in-house-prepared medium. Method This study used iPSCs previously generated from peripheral blood mononuclear cells (PBMCs) from a patient with sickle cell anemia (iPSC_scd). Hematopoietic and erythroid differentiation was performed in two steps. Firstly, with the induction of hematopoietic differentiation through embryoid body formation, we evaluated the efficiency of two serum-free media; and secondly, the induction of hematopoietic stem/progenitor cells to erythroid progenitor cells was performed. Results The patient-specific cell line generated CD34+/CD45+ and CD45+/CD43+ hematopoietic stem/progenitor cells and erythroid progenitors, comprising CD36+, CD71+ and CD235a+ populations, as well as the formation of hematopoietic colonies, including erythroid colonies, in culture in a semi-solid medium. Conclusion In conjunction, our results described a simple serum-free platform to differentiate human the iPSCs into hematopoietic progenitor cells. This platform is an emerging application of iPSCs in vitro disease modeling, which can significantly improve the search for new pharmacological drugs for sickle cell disease.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Anemia Falciforme/terapia , Células Precursoras Eritroides
3.
Hematol Transfus Cell Ther ; 43(2): 156-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32229108

RESUMO

INTRODUCTION: Sickle cell disease (SCD) is a monogenic disease and it is estimated that 300,000 infants are born annually with it. Most treatments available are only palliative, whereas the allogeneic hematopoietic stem cell transplantation offers the only potential cure for SCD. OBJECTIVE: Generation of human autologous cells, when coupled with induced pluripotent stem cell (iPSC) technology, is a promising approach for developing study models. In this study, we provide a simple and efficient model for generating hematopoietic cells using iPSCs derived from a sickle cell anemia patient and an inexpensive in-house-prepared medium. METHOD: This study used iPSCs previously generated from peripheral blood mononuclear cells (PBMCs) from a patient with sickle cell anemia (iPSC_scd). Hematopoietic and erythroid differentiation was performed in two steps. Firstly, with the induction of hematopoietic differentiation through embryoid body formation, we evaluated the efficiency of two serum-free media; and secondly, the induction of hematopoietic stem/progenitor cells to erythroid progenitor cells was performed. RESULTS: The patient-specific cell line generated CD34+/CD45+ and CD45+/CD43+ hematopoietic stem/progenitor cells and erythroid progenitors, comprising CD36+, CD71+ and CD235a+ populations, as well as the formation of hematopoietic colonies, including erythroid colonies, in culture in a semi-solid medium. CONCLUSION: In conjunction, our results described a simple serum-free platform to differentiate human the iPSCs into hematopoietic progenitor cells. This platform is an emerging application of iPSCs in vitro disease modeling, which can significantly improve the search for new pharmacological drugs for sickle cell disease.

4.
Bull Environ Contam Toxicol ; 93(4): 405-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25151280

RESUMO

Changes in protein levels and lipid compositions in algal cells indicate the severity of stress related to toxic concentrations of heavy metals. In this study, the effects of exposure to cadmium and copper on Chlorella vulgaris and its capacity to remove metals were evaluated. The data revealed ion removal activity by microalgae under all treatments and different levels of protein expression after 48 h of exposure. Furthermore, we analyzed lipids contents to characterize them.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Chlorella vulgaris/efeitos dos fármacos , Cobre/toxicidade , Absorção , Proteínas de Algas/metabolismo , Chlorella vulgaris/metabolismo , Cobre/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA