RESUMO
The aim of this study was to evaluate the selected 41 SSR markers developed for yellow passion fruit (Passiflora edulis f. flavicarpa Sims.) for their transferability to 11 different Passiflora species. Twenty-one SSR were successfully amplified in 10 wild species of passion fruit producing 101 bands. All the markers were amplifiable for at least one species. The mean transferability was 68,8%, ranging from 15,4% (primer PE11) to 100 % (PE13, PE18, PE37, PE41 and PE88). Transferability was higher for the species from the Passiflora subgenus than for those from the Decaloba and Dysosmia subgenus. The results indicated a high level of nucleotide sequence conservation of the primer regions in the species evaluated, and consequently, they could potentially be used for the establishment of molecular strategies for use in passion fruit breeding and genetics.
RESUMO
Genetic variation among sweet, purple, and yellow passion fruit accessions was assessed using inter-simple sequence repeat (ISSR) markers. Eighteen ISSR primers were used to evaluate 45 accessions. The number of polymorphic bands per primer varied from 4 to 22, with 12.4 bands per primer on average. Nei's genetic distance between accessions ranged from 0.04 to 0.35. Clustering using the neighbor-joining method resulted in the formation of 11 major clusters. It was not possible to classify the accessions according to their geographic origin, showing that there is no structure in the gene bank. The overall mean Shannon-Weaver diversity index was 0.32, indicating good resolution of genetic diversity in passion fruit germplasm using ISSR markers. Our results indicate that ISSR can be useful for genetic diversity studies, to provide practical information for parental selection and to assist breeding and conservation strategies.