Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proteomics ; 24(18): e2100313, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850190

RESUMO

Evolutionary relationships among parasites of the subfamily Leishmaniinae, which comprises pathogen agents of leishmaniasis, were inferred based on differential protein expression profiles from mass spectrometry-based quantitative data using the PhyloQuant method. Evolutionary distances following identification and quantification of protein and peptide abundances using Proteome Discoverer and MaxQuant software were estimated for 11 species from six Leishmaniinae genera. Results clustered all dixenous species of the genus Leishmania, subgenera L. (Leishmania), L. (Viannia), and L. (Mundinia), sister to the dixenous species of genera Endotrypanum and Porcisia. Placed basal to the assemblage formed by all these parasites were the species of genera Zelonia, Crithidia, and Leptomonas, so far described as monoxenous of insects although eventually reported from humans. Inferences based on protein expression profiles were congruent with currently established phylogeny using DNA sequences. Our results reinforce PhyloQuant as a valuable approach to infer evolutionary relationships within Leishmaniinae, which is comprised of very tightly related trypanosomatids that are just beginning to be phylogenetically unraveled. In addition to evolutionary history, mapping of species-specific protein expression is paramount to understand differences in infection processes, tissue tropisms, potential to jump from insects to vertebrates including humans, and targets for species-specific diagnostic and drug development.


Assuntos
Leishmania , Filogenia , Trypanosomatina , Leishmania/genética , Leishmania/metabolismo , Leishmania/classificação , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/classificação , Evolução Molecular , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteômica/métodos , Proteoma/genética , Proteoma/análise , Proteoma/metabolismo , Crithidia/genética , Crithidia/metabolismo
2.
Biomed Pharmacother ; 177: 116881, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917757

RESUMO

Cutaneous leishmaniasis (CL) is a neglected disease caused by Leishmania parasites. The oral drug miltefosine is effective, but there is a growing problem of drug resistance, which has led to increasing treatment failure rates and relapse of infections. Photodynamic therapy (PDT) combines a light source and a photoactive drug to promote cell death by oxidative stress. Although PDT is effective against several pathogens, its use against drug-resistant Leishmania parasites remains unexplored. Herein, we investigated the potential of organic light-emitting diodes (OLEDs) as wearable light sources, which would enable at-home use or ambulatory treatment of CL. We also assessed its impact on combating miltefosine resistance in Leishmania amazonensis-induced CL in mice. The in vitro activity of OLEDs combined with 1,9-dimethyl-methylene blue (DMMB) (OLED-PDT) was evaluated against wild-type and miltefosine-resistant L. amazonensis strains in promastigote (EC50 = 0.034 µM for both strains) and amastigote forms (EC50 = 0.052 µM and 0.077 µM, respectively). Cytotoxicity in macrophages and fibroblasts was also evaluated. In vivo, we investigated the potential of OLED-PDT in combination with miltefosine using different protocols. Our results demonstrate that OLED-PDT is effective in killing both strains of L. amazonensis by increasing reactive oxygen species and stimulating nitric oxide production. Moreover, OLED-PDT showed great antileishmanial activity in vivo, allowing the reduction of miltefosine dose by half in infected mice using a light dose of 7.8 J/cm2 and 15 µM DMMB concentration. In conclusion, OLED-PDT emerges as a new avenue for at-home care and allows a combination therapy to overcome drug resistance in cutaneous leishmaniasis.


Assuntos
Resistência a Medicamentos , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Fosforilcolina , Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Feminino , Leishmania/efeitos dos fármacos , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
3.
J Proteomics ; 295: 105088, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237666

RESUMO

Leishmania parasites cause a spectrum of diseases termed leishmaniasis, which manifests in two main clinical forms, cutaneous and visceral leishmaniasis. Leishmania promastigotes transit from proliferative exponential to quiescent stationary phases inside the insect vector, a relevant step that recapitulates early molecular events of metacyclogenesis. During the insect blood meal of the mammalian hosts, the released parasites interact initially with the skin, an event marked by temperature changes. Deep knowledge on the molecular events activated during Leishmania-host interactions in each step is crucial to develop better therapies and to understand the pathogenesis. In this study, the proteomes of Leishmania (Leishmania) amazonensis (La), Leishmania (Viannia) braziliensis (Lb), and Leishmania (Leishmania) infantum (syn L. L. chagasi) (Lc) were analyzed using quantitative proteomics to uncover the proteome modulation in three different conditions related to growth phases and temperature shifts: 1) exponential phase (Exp); 2) stationary phase (Sta25) and; 3) stationary phase subjected to heat stress (Sta34). Functional validations were performed using orthogonal techniques, focusing on α-tubulin, gp63 and heat shock proteins (HSPs). Species-specific and condition-specific modulation highlights the plasticity of the Leishmania proteome, showing that pathways related to metabolism and cytoskeleton are significantly modulated from exponential to stationary growth phases, while protein folding, unfolded protein binding, signaling and microtubule-based movement were differentially altered during temperature shifts. This study provides an in-depth proteome analysis of three Leishmania spp., and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts. SIGNIFICANCE: Leishmaniasis disease manifests in two main clinical forms according to the infecting Leishmania species and host immune responses, cutaneous and visceral leishmaniasis. In Brazil, cutaneous leishmaniasis (CL) is associated with L. braziliensis and L. amazonensis, while visceral leishmaniasis, also called kala-azar, is caused by L. infantum. Leishmania parasites remodel their proteomes during growth phase transition and changes in their mileu imposed by the host, including temperature. In this study, we performed a quantitative mass spectrometry-based proteomics to compare the proteome of three New world Leishmania species, L. amazonensis (La), L. braziliensis (Lb) and L. infantum (syn L. chagasi) (Lc) in three conditions: a) exponential phase at 25 °C (Exp); b) stationary phase at 25 °C (Sta25) and; c) stationary phase subjected to temperature stress at 34 °C (Sta34). This study provides an in-depth proteome analysis of three Leishmania spp. with varying pathophysiological outcomes, and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts.


Assuntos
Leishmania braziliensis , Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Animais , Leishmania infantum/metabolismo , Proteoma/metabolismo , Temperatura , Leishmaniose Cutânea/parasitologia , Mamíferos
4.
Mem Inst Oswaldo Cruz ; 118: e220212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37222308

RESUMO

Here is our proposal to improve learning in biomedical sciences for graduate and undergraduate courses with a broad vision integrating disciplines such as molecular cell biology, biochemistry, and biophysics around concepts of pathogen interaction within vertebrate and invertebrate hosts. Our paradigm is based on the possibility offered by the pandemic to have remote activities that give access to students and researchers from different places in Brazil and Latin American countries to discuss science. A multidisciplinary view of host-pathogen interaction allows us to understand better the mechanisms involved in the pathology of diseases, as well as to formulate broad strategies for the diagnosis, treatment, and control of thereof. The approach to integrating heterogeneous groups in science involves the critical analysis of national scientific resource distribution, where only some have the possibilities to conduct competitive scientific research. Solid theoretical training, contact, collaboration with groups of excellence, and training within a multidisciplinary network are our proposals for a permanent platform of scientific strengthening and dissemination for Latin America. Here we will review the concept of host-pathogen interaction, the type of institutions where it is taught and researched, new trends in active teaching methodologies, and the current political context in science.


Assuntos
Interações Hospedeiro-Patógeno , Pandemias , Humanos , Brasil
5.
Mem. Inst. Oswaldo Cruz ; 118: e220212, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440668

RESUMO

Here is our proposal to improve learning in biomedical sciences for graduate and undergraduate courses with a broad vision integrating disciplines such as molecular cell biology, biochemistry, and biophysics around concepts of pathogen interaction within vertebrate and invertebrate hosts. Our paradigm is based on the possibility offered by the pandemic to have remote activities that give access to students and researchers from different places in Brazil and Latin American countries to discuss science. A multidisciplinary view of host-pathogen interaction allows us to understand better the mechanisms involved in the pathology of diseases, as well as to formulate broad strategies for the diagnosis, treatment, and control of thereof. The approach to integrating heterogeneous groups in science involves the critical analysis of national scientific resource distribution, where only some have the possibilities to conduct competitive scientific research. Solid theoretical training, contact, collaboration with groups of excellence, and training within a multidisciplinary network are our proposals for a permanent platform of scientific strengthening and dissemination for Latin America. Here we will review the concept of host-pathogen interaction, the type of institutions where it is taught and researched, new trends in active teaching methodologies, and the current political context in science.

6.
Mem Inst Oswaldo Cruz, v. 118, e220212, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4931

RESUMO

Here is our proposal to improve learning in biomedical sciences for graduate and undergraduate courses with a broad vision integrating disciplines such as molecular cell biology, biochemistry, and biophysics around concepts of pathogen interaction within vertebrate and invertebrate hosts. Our paradigm is based on the possibility offered by the pandemic to have remote activities that give access to students and researchers from different places in Brazil and Latin American countries to discuss science. A multidisciplinary view of host-pathogen interaction allows us to understand better the mechanisms involved in the pathology of diseases, as well as to formulate broad strategies for the diagnosis, treatment, and control of thereof. The approach to integrating heterogeneous groups in science involves the critical analysis of national scientific resource distribution, where only some have the possibilities to conduct competitive scientific research. Solid theoretical training, contact, collaboration with groups of excellence, and training within a multidisciplinary network are our proposals for a permanent platform of scientific strengthening and dissemination for Latin America. Here we will review the concept of host-pathogen interaction, the type of institutions where it is taught and researched, new trends in active teaching methodologies, and the current political context in science.

7.
Biomolecules ; 11(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34572535

RESUMO

Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.


Assuntos
Calcineurina/metabolismo , Simulação por Computador , Espaço Intracelular/parasitologia , Leishmania/patogenicidade , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/patogenicidade , Sequência de Aminoácidos , Calcineurina/química , Calpaína/metabolismo , Sequência Conservada , Humanos , Imunofilinas/metabolismo , Imunossupressores/farmacologia , Ácido Mirístico/metabolismo , Fosforilação , Domínios Proteicos , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Frações Subcelulares/metabolismo
8.
Mol Immunol ; 132: 172-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601226

RESUMO

The trypanosomatid pathogens Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei, currently grouped as TriTryps, have evolved through the time to overcome the upfront innate immune response and establish the infection in humans adapting many aspects of the parasite-cell host interaction. Extracellular vesicles (EVs) emerge as critical structures carrying different key molecules from parasites and target cells that interact continuously during infection. Current information regarding the structure and composition of these vesicles provide new insights into the primary role of TriTryps-EVs reviewed in this work. Expanding knowledge about these critical vesicular structures will promote advances in basic sciences and in translational applications controlling pathogenesis in the neglected tropical diseases caused by TriTryps.


Assuntos
Vesículas Extracelulares/imunologia , Leishmania major/imunologia , Infecções por Protozoários/imunologia , Trypanosoma brucei brucei/imunologia , Trypanosoma cruzi/imunologia , Animais , Vesículas Extracelulares/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata/imunologia , Infecções por Protozoários/parasitologia
9.
Molecules ; 25(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291367

RESUMO

The dioctadecyldimethylammonium bromide (DODAB) is a double-chained cationic lipid with potent bactericide and fungistatic activities; however, its toxicity on protozoan parasites is still unknown. Here, we show the antileishmanial activity of DODAB nano-sized cationic bilayer fragments on stationary-phase promastigotes and amastigotes of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis. Upon treatment with DODAB, we analyzed the parasite surface zeta-potential, parasite viability, cellular structural modifications, and intracellular proliferation. The DODAB cytotoxic effect was dose-dependent, with a median effective concentration (EC50) of 25 µM for both life-cycle stages, comparable to the reported data for bacteria and fungi. The treatment with DODAB changed the membrane zeta-potential from negative to positive, compromised the parasite's morphology, affected the cell size regulation, caused a loss of intracellular organelles, and probably dysregulated the plasma membrane permeability without membrane disruption. Moreover, the parasites that survived after treatment induced small parasitophorous vacuoles and failed to proliferate inside macrophages. In conclusion, DODAB displayed antileishmanial activity, and it remains to be elucidated how DODAB acts on the protozoan membrane. Understanding this mechanism can provide insights into the development of new parasite-control strategies.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Cátions/química , Leishmania mexicana/efeitos dos fármacos , Nanopartículas/química , Compostos de Amônio Quaternário/química , Animais , Leishmaniose Cutânea/tratamento farmacológico , Estágios do Ciclo de Vida/efeitos dos fármacos , Lipídeos/química , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
10.
Parasit Vectors ; 13(1): 603, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261663

RESUMO

BACKGROUND: Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes Rocky Mountain spotted fever, a life-threatening illness. To obtain an insight into the vector-pathogen interactions, we assessed the effects of infection with R. rickettsii on the proteome cells of the tick embryonic cell line BME26. METHODS: The proteome of BME26 cells was determined by label-free high-performance liquid chromatography coupled with tandem mass spectrometry analysis. Also evaluated were the effects of infection on the activity of caspase-3, assessed by the hydrolysis of a synthetic fluorogenic substrate in enzymatic assays, and on the exposition of phosphatidyserine, evaluated by live-cell fluorescence microscopy after labeling with annexin-V. Finally, the effects of activation or inhibition of caspase-3 activity on the growth of R. rickettsii in BME26 cells was determined. RESULTS: Tick proteins of different functional classes were modulated in a time-dependent manner by R. rickettsii infection. Regarding proteins involved in apoptosis, certain negative regulators were downregulated at the initial phase of the infection (6 h) but upregulated in the middle of the exponential phase of the bacterial growth (48 h). Microorganisms are known to be able to inhibit apoptosis of the host cell to ensure their survival and proliferation. We therefore evaluated the effects of infection on classic features of apoptotic cells and observed DNA fragmentation exclusively in noninfected cells. Moreover, both caspase-3 activity and phosphatidylserine exposition were lower in infected than in noninfected cells. Importantly, while the activation of caspase-3 exerted a detrimental effect on rickettsial proliferation, its inhibition increased bacterial growth. CONCLUSIONS: Taken together, these results show that R. rickettsii modulates the proteome and exerts an inhibitory effect on apoptosis in tick cellsthat seems to be important to ensure cell colonization.


Assuntos
Apoptose , Rickettsia rickettsii/fisiologia , Carrapatos/citologia , Carrapatos/microbiologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Interações Hospedeiro-Patógeno , Carrapatos/genética , Carrapatos/metabolismo
11.
Front Microbiol ; 11: 582107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240236

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen associated with life-threatening nosocomial and community-acquired infections. Antibiotic resistance is an immediate threat to public health and demands an urgent action to discovering new antimicrobial agents. One of the best alternatives for pre-clinical tests with animal models is the greater wax moth Galleria mellonella. Here, we evaluated the antipseudomonal activity of silver nanoparticles (AgNPs) against P. aeruginosa strain UCBPP-PA14 using G. mellonella larvae. The AgNPs were synthesized through a non-toxic biogenic process involving microorganism fermentation. The effect of AgNPs was assessed through characterization and quantification of the hemocytic response, nodulation and phenoloxidase cascade. On average, 80% of the larvae infected with P. aeruginosa and prophylactically treated with nanoparticles survived. Both the specific and total larvae hemocyte counts were restored in the treated group. In addition, the nodulation process and the phenoloxidase cascade were less exacerbated when the larvae were exposed to the silver nanoparticles. AgNPs protect the larvae from P. aeruginosa infection by directly killing the bacteria and indirectly by preventing an exacerbated immunological response against the pathogen. Our results suggest that the prophylactic use of AgNPs has a strong protective activity against P. aeruginosa infection.

12.
Biochem J ; 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33094814

RESUMO

Abnormal sterols disrupt cellular functions through yet unclear mechanisms. In Saccharomyces cerevisiae, accumulation of Δ8-sterols, the same type of sterols observed in patients of Conradi-Hünermann-Happle syndrome or in fungi after amine fungicide treatment, leads to cell wall weakness. We have studied the influence of Δ8-sterols on the activity of glucan synthase I, the protein synthetizing the main polymer in fungal cell walls, its regulation by the Cell Wall Integrity (CWI) pathway, and its transport from the endoplasmic reticulum to the plasma membrane. We ascertained that the catalytic characteristics were mostly unaffected by the presence of abnormal sterols but the enzyme was partially retained in the endoplasmic reticulum, leading to glucan deficit at the cell wall. Furthermore, we observed that glucan synthase I traveled through an unconventional exocytic route to the plasma membrane that is associated with low density intracellular membranes. Also, we found out that the CWI pathway remained inactive despite low glucan levels at the cell wall. Taken together, these data suggest that Δ8-sterols affect cell walls by inhibiting unconventional secretion of proteins leading to retention and degradation of glucan synthase I, while the compensatory CWI pathway is unable to activate. These results could be instrumental to understand defects of bone development in cholesterol biosynthesis disorders and fungicide mechanisms of action.

13.
Mol Omics ; 16(5): 407-424, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32724945

RESUMO

Protein glycosylation is a co- and post-translational modification that, in Leishmania parasites, plays key roles in vector-parasite-vertebrate host interaction. In the mammalian host, Leishmania protein glycosylation is involved in virulence, host cell invasion, and immune evasion and modulation. The Leishmania glycocalyx is composed by a dense array of glycoconjugates including lipophosphoglycan, glycoinositolphospholipids, glycoproteins and proteophosphoglycans which varies in composition between Leishmania species and developmental stages. The current knowledge on Leishmania protein glycosylation is quite limited. The development of novel analytical tools to characterize the Leishmania glycoproteome and the expanding toolbox to modulate the parasite glycocode will help in deciphering the processes involved in Leishmania-host interaction. This review will recapitulate the current knowledge of Leishmania protein glycosylation, and glycan structures reported, and the potential application of mass spectrometry-based analysis for system-wide Leishmania glycoproteome and glycome analysis.


Assuntos
Leishmania/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Glicosilação , Humanos , Leishmaniose/tratamento farmacológico , Polissacarídeos/química , Polissacarídeos/metabolismo
14.
Photochem Photobiol ; 96(3): 604-610, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31792979

RESUMO

Cutaneous leishmaniasis (CL) is a neglected disease that promotes destructive lesions. Difficulties in treatment are related to accessibility of drugs, resistance and toxicity. Antimicrobial photodynamic therapy (APDT) has been emerging as a promising treatment for CL. In this work, we evaluated methylene blue (MB)-mediated APDT (MB-APDT) on Leishmania amazonensis in vitro and in vivo by bioluminescence technique. In vitro, MB-APDT was performed using a red LED (λ = 660 ± 11 nm, 100 mW cm-2 ) and MB (100 µm) at different light doses. In vivo, mice were infected and 4 weeks later, randomly divided into three groups: control, APDT 1 (single session) and APDT 2 (two sessions of MB-APDT). MB was used at 100 µm and energy dose was established at 150 J cm-2 . Parasite burden, lesion size and pain were evaluated weekly for 4 weeks. In vitro, lethal dose for 90% parasite inactivation was achieved at 48.8 J cm-2 . In vivo, although APDT 1 and APDT 2 groups have showed similar parasite burden after 4 weeks, two sessions were clinically better, especially considering the inflammatory process associated to CL. Our findings reinforce MB-APDT as a cost-effective treatment to combat CL.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Azul de Metileno/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Leishmaniose Cutânea/tratamento farmacológico , Luminescência , Camundongos , Camundongos Endogâmicos BALB C
15.
Nitric Oxide ; 93: 25-33, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541732

RESUMO

Leishmaniasis is a neglected tropical disease that demands for new therapeutic strategies due to adverse side effects and resistance development promoted by current drugs. Nitric oxide (NO)-donors show potential to kill Leishmania spp. but their use is limited because of their instability. In this work, we synthesize, characterize, and encapsulate S-nitroso-mercaptosuccinic acid into chitosan nanoparticles (NONPs) and investigate their activity on promastigotes and intracellular amastigotes of Leishmania (Leishmania) amazonensis. Cytotoxicity on macrophages was also evaluated. We verified that NONPs reduced both forms of the parasite in a single treatment. We also noticed reduction of parasitophorous vacuoles as an evidence of inhibition of parasite growth and resolution of infection. No substantial cytotoxicity was detected on macrophages. NONPs were able to provide a sustained parasite killing for both L. (L.) amazonensis infective stages with no toxicity on macrophages, representing a promising nanoplatform for cutaneous leishmaniasis.


Assuntos
Quitosana/química , Leishmania/efeitos dos fármacos , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Tiomalatos/farmacologia , Animais , Quitosana/toxicidade , Cinética , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade , Óxido Nítrico/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/toxicidade , Compostos Nitrosos/química , Compostos Nitrosos/toxicidade , Tiomalatos/química , Tiomalatos/toxicidade , Tripanossomicidas
16.
Front Microbiol ; 9: 1177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922261

RESUMO

Leishmaniasis is caused by trypanosomatid protozoa of the genus Leishmania, which infect preferentially macrophages. The disease affects 12 million people worldwide, who may present cutaneous, mucocutaneous or visceral forms. Several factors influence the form and severity of the disease, and the main ones are the Leishmania species and the host immune response. CD100 is a membrane bound protein that can also be shed. It was first identified in T lymphocytes and latter shown to be induced in macrophages by inflammatory stimuli. The soluble CD100 (sCD100) reduces migration and expression of inflammatory cytokines in human monocytes and dendritic cells, as well as the intake of oxidized low-density lipoprotein (oxLDL) by human macrophages. Considering the importance of macrophages in Leishmania infection and the potential role of sCD100 in the modulation of macrophage phagocytosis and activation, we analyzed the expression and distribution of CD100 in murine macrophages and the effects of sCD100 on macrophage infection by Leishmania (Leishmania) amazonensis. Here we show that CD100 expression in murine macrophages increases after infection with Leishmania. sCD100 augments infection and phagocytosis of Leishmania (L.) amazonensis promastigotes by macrophages, an effect dependent on macrophage CD72 receptor. Besides, sCD100 enhances phagocytosis of zymosan particles and infection by Trypanosoma cruzi.

17.
PLoS Negl Trop Dis ; 12(1): e0006170, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29320490

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.


Assuntos
Compostos de Amônio/metabolismo , Glutamato-Amônia Ligase/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Trifosfato de Adenosina/metabolismo , Deleção de Genes , Teste de Complementação Genética , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
18.
Plos Neglect Trop Dis, v. 12, n. 1, e0006170, jan. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2439

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/ mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.

19.
PLoS Negl Trop Dis ; 8(1): e2676, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498455

RESUMO

Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca(2+)-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn(2+)/Ni(2+). The participation of TcCaNA2 in target cell invasion by metacyclic trypomastigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication.


Assuntos
Calcineurina/genética , Calcineurina/metabolismo , Trypanosoma cruzi/metabolismo , Antígenos de Protozoários , Domínio Catalítico/genética , Proliferação de Células , Clonagem Molecular , Endocitose , Ativadores de Enzimas/metabolismo , Células HeLa , Humanos , Manganês/metabolismo , Dados de Sequência Molecular , Níquel/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Multimerização Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Trypanosoma cruzi/genética
20.
Acta Trop ; 110(1): 65-74, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19283898

RESUMO

The phylogenetic proximity between Trypanosoma cruzi and Trypanosoma (Schizotrypanum) dionisii suggests that these parasites might explore similar strategies to complete their life cycles. T. cruzi is the etiological agent of the life-threatening Chagas' disease, whereas T. dionisii is a bat trypanosome and probably not capable of infecting humans. Here we sought to compare mammalian cell invasion and intracellular traffic of both trypanosomes and determine the differences and similarities in this process. The results presented demonstrate that T. dionisii is highly infective in vitro, particularly when the infection process occurs without serum and that the invasion is similarly affected by agents known to interfere with T. cruzi invasion process. Our results indicate that the formation of lysosomal-enriched compartments is part of a cell-invasion mechanism retained by related trypanosomatids, and that residence and further escape from a lysosomal compartment may be a common requisite for successful infection. During intracellular growth, parasites share a few epitopes with T. cruzi amastigotes and trypomastigotes. Unexpectedly, in heavily infected cells, amastigotes and trypomastigotes were found inside the host cell nucleus. These findings suggest that T. dionisii, although sharing some features in host cell invasion with T. cruzi, has unique behaviors that deserve to be further explored.


Assuntos
Núcleo Celular/parasitologia , Trypanosoma/crescimento & desenvolvimento , Animais , Linhagem Celular , Lisossomos/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA