Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35319, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610175

RESUMO

Cobalt-doped monetite powders were synthesized by coprecipitation method under a cobalt nominal content between 2 and 20 mol % of total cation. Structural characterization of samples was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD results indicated that the Co-doped samples exhibited a monetite single-phase with the cell parameters and crystallite size dependent on the amount of substitutional element incorporated into the triclinic crystalline structure. Cell viability and adhesion assays using pre-osteoblastic cells showed there is no toxicity and the RTqPCR analysis showed significant differences in the expression for osteoblastic phenotype genes, showing a potential material for the bone regeneration.


Assuntos
Fosfatos de Cálcio , Cobalto , Cobalto/farmacologia , Cobalto/química , Regeneração Óssea , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902942

RESUMO

It is crucial for clinical needs to develop novel titanium alloys feasible for long-term use as orthopedic and dental prostheses to prevent adverse implications and further expensive procedures. The primary purpose of this research was to investigate the corrosion and tribocorrosion behavior in the phosphate buffered saline (PBS) of two recently developed titanium alloys, Ti-15Zr and Ti-15Zr-5Mo (wt.%) and compare them with the commercially pure titanium grade 4 (CP-Ti G4). Density, XRF, XRD, OM, SEM, and Vickers microhardness analyses were conducted to give details about the phase composition and the mechanical properties. Additionally, electrochemical impedance spectroscopy was used to supplement the corrosion studies, while confocal microscopy and SEM imaging of the wear track were used to evaluate the tribocorrosion mechanisms. As a result, the Ti-15Zr (α + α' phase) and Ti-15Zr-5Mo (α″ + ß phase) samples exhibited advantageous properties compared to CP-Ti G4 in the electrochemical and tribocorrosion tests. Moreover, a better recovery capacity of the passive oxide layer was observed in the studied alloys. These results open new horizons for biomedical applications of Ti-Zr-Mo alloys, such as dental and orthopedical prostheses.

3.
Sci Rep ; 12(1): 11874, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831317

RESUMO

Ti and its alloys are the most used metallic biomaterials devices due to their excellent combination of chemical and mechanical properties, biocompatibility, and non-toxicity to the human body. However, the current alloys available still have several issues, such as cytotoxicity of Al and V and high elastic modulus values, compared to human bone. ß-type alloys, compared to α-type and (α + ß)-type Ti alloys, have lower elastic modulus and higher mechanical strength. Then, new biomedical ß-type alloys are being developed with non-cytotoxic alloying elements, such as Mo and Nb. Therefore, Ti-5Mo-xNb system alloys were prepared by argon arc melting. Chemical composition was evaluated by EDS analysis, and the density measurements were performed by Archimedes' method. The structure and microstructure of the alloys were obtained by X-ray diffraction and optical and scanning electron microscopy. Microhardness values were analyzed, and MTT and crystal violet tests were performed to assess their cytotoxicity. As the Nb concentration increases, the presence of the ß-Ti phase also grows, with the Ti-5Mo-30Nb alloy presenting a single ß-Ti phase. In contrast, the microhardness of the alloys decreases with the addition of Nb, except the Ti-5Mo-10Nb alloy, which has its microhardness increased probably due to the ω phase precipitation. Biological in-vitro tests showed that the alloys are not cytotoxic.


Assuntos
Ligas , Nióbio , Ligas/química , Materiais Biocompatíveis/química , Módulo de Elasticidade , Humanos , Teste de Materiais , Nióbio/química , Titânio/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA