Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(39): 91060-91073, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464210

RESUMO

The objective of this research was to evaluate the performance of a structured bed reactor (SBRIA), carried out with intermittent aeration (IA), in the removal of organic matter and nitrogen from dairy effluent, when run with different organic loading rates (OLR). The SBRIA was operated for 227 days, with 2:1 AI cycles (2 h with aeration on and 1 h off) and Hydraulic Retention Time (HRT) of 16 h. Three phases, with different OLR, were evaluated: phases A (1000 gCOD m-3 day-1 - 63 days), B (1400 gCOD m-3 day-1 - 94 days), and C (1800 gCOD m-3 day-1 - 70 days). The percentage of COD, NH4+-N removal, and nitrogen removal, respectively, were above 85 ± 7%, 73 ± 27%, and 83 ± 5, in all phases. There was no accumulation of the oxidized forms of nitrogen in the reactor. The kinetic test, performed to evaluate the nitrification and denitrification in the system, indicated that even in dissolved oxygen concentrations of 4.5 mg L-1, it was possible to obtain the denitrification process in the system. The results demonstrate that the reactor under study has positive characteristics to be used as an alternative for removing the removal of organic material and nitrogen in the biological treatment of dairy effluents.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Nitrificação , Eliminação de Resíduos Líquidos/métodos
2.
Environ Technol ; 43(16): 2443-2456, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33502955

RESUMO

This research aimed the performance evaluation of a structured bed reactor with different cycles of Intermittent Aeration (IA)(SBRRIA) in the municipal sewage treatment and the verification of the effect of IA cycles on the total nitrogen (TN) removal and organic matter (COD). Three IA cycles were evaluated: phase I (4 h AE (aeration on) - 2 h NA (aeration off)); II (2 h AE-1 h NA) and III (2 h AE-2 h NA), with Hydraulic Retention Time of 16 h. The best nitrogen removal was obtained during phase II, with the lowest non-aeration time: efficiency of nitrification, denitrification, TN and COD removal of 80 ± 15%, 82 ± 12%, 67 ± 6% and 94 ± 7%, respectively. The mean cell residence time was 19, 26 and 33 d in phases I, II and III, respectively. The statistical analysis applied to the AE/NA profiles showed that the time of AE and NA in the cycles did not influence nitrogen and organic matter removal. Thus, this indicates the recirculation and the gradient formed in the support material facilitate the process of Simultaneous Nitrification and Denitrification. The lowest concentration of nitrifying and denitrifying microorganisms was obtained in effluent and sludge at the end of phase III. From the TP (Total Proteins)/TPS (Total Polysaccharides) ratio obtained (0.8 ± 0.1, 1.3 ± 0.1 e 1.5 ± 0.1 in phases I, II and III), it was possible to conclude that the biofilm in phase I was more porous, with a thin layer if compared to that in phase II and III.


Assuntos
Desnitrificação , Nitrogênio , Biofilmes , Reatores Biológicos , Nitrificação , Nitrogênio/metabolismo , Esgotos , Eliminação de Resíduos Líquidos
3.
Environ Monit Assess ; 191(9): 577, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31502088

RESUMO

The objective of this research was to evaluate the interaction of landfill leachate of urban solid waste in clayey (CL) and sandy soils (SL) in order to determine physical and chemical parameters that can be used as indicators of soil contamination when there are faults in the landfill waterproofing. In the diffusion tests, compacted soil samples were placed in contact with leachate (methanogenic phase). The temporal analysis (200 days) considered the parameters pH, electrical conductivity (EC), alkalinity, nitrogen series, chemical oxygen demand (COD), solids and color for the leachate and pH, ΔpH, EC, total nitrogen (TN), chemical elements, and cation exchange capacity (CEC) for the soils. Correlation analysis and principal component analysis (PCA) were performed to results. It was observed that the studied soils have potential to attenuate chemicals present in the leachate; this indicates the possibility of using them as base in landfills. Correlation analysis and PCA carried out to CL showed that in a process of CL monitoring the pH would be the key parameter to indicate contamination of this soil, due to the high correlation of this parameter with the others analyzed. For the SL, the parameters pH, alkalinity, apparent color, and COD (total and filtered) could be used as indicators of contamination. In both soils, monitoring of concentrations of Ca, Mg, K, SB, V, and CTC can be used to indicate possible faults in the waterproofing system of the landfill.


Assuntos
Monitoramento Ambiental , Poluentes do Solo/análise , Solo/química , Resíduos Sólidos/análise , Poluentes Químicos da Água/análise , Cidades , Argila/química , Difusão , Eliminação de Resíduos , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA