Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1281058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075883

RESUMO

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

2.
Bioresour Technol ; 277: 211-215, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639092

RESUMO

The main goal of this work was to evaluate the performance of ß-galactosidase from Exiguobacterium acetylicum MF03 in both hydrolysis and transgalactosylation reactions from different substrates. The enzyme gene was expressed in Escherichia coli BL21 (DE3), sequenced, and subjected to bioinformatic and kinetic assessment. Results showed that the enzyme was able to hydrolyze lactulose and o-nitrophenyl-ß-d-galactopyranoside, but unable to hydrolyze lactose, o-nitrophenyl-ß-d-glucopyranoside, butyl- and pentyl-ß-d-galactosides. This unique and novel substrate specificity converts the E. acetylicum MF03 ß-galactosidase into an ideal catalyst for the formulation of an enzymatic kit for lactulose quantification in thermally processed milk. This is because costly steps to eliminate glucose (resulting from hydrolysis of lactose when a customary ß-galactosidase is used) can be avoided.


Assuntos
Bacillaceae/enzimologia , beta-Galactosidase/metabolismo , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , Hidrólise , Cinética , Especificidade por Substrato , beta-Galactosidase/genética , beta-Galactosidase/isolamento & purificação
3.
Front Microbiol ; 9: 959, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869640

RESUMO

Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO32- ) and tetrachloro aurate ( AuCl4- ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO32- ) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- µg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 µg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- µg/ml, respectively.

4.
PeerJ ; 6: e4402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479501

RESUMO

The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.

5.
Nat Commun ; 8: 15320, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492282

RESUMO

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Vias Biossintéticas , Heme/biossíntese , Metaloides/farmacologia , Telúrio/farmacologia , Ácido Aminolevulínico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Deficiências de Ferro , Testes de Sensibilidade Microbiana , Modelos Biológicos , Mutação/genética , Protoporfirinas/farmacologia , Superóxidos/metabolismo , Telúrio/toxicidade
6.
Front Microbiol ; 7: 1160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507969

RESUMO

The tellurium oxyanion tellurite (TeO3 (2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)(+)-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.

7.
Arch Biochem Biophys ; 566: 67-75, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25447814

RESUMO

Escherichia coli exposed to tellurite shows augmented membrane lipid peroxidation and ROS content. Also, reduced thiols, protein carbonylation, [Fe-S] center dismantling, and accumulation of key metabolites occur in these bacteria. In spite of this, not much is known about tellurite effects on the E. coli electron transport chain (ETC). In this work, tellurite-mediated damage to the E. coli ETC's NADH dehydrogenases and terminal oxidases was assessed. Mutant lacking ETC components showed delayed growth, decreased oxygen consumption and increased ROS in the presence of the toxicant. Membranes from tellurite-exposed E. coli exhibited decreased oxygen consumption and dNADH/NADH dehydrogenase activity, showing an impairment of NDH-I but not of NDH-II activity. Regarding terminal oxidases, only the bo oxidase complex was affected by tellurite. When assaying NDH-I and NDH-II activity in the presence of superoxide, the NDH-I complex was preferentially damaged. The activity was partly restored in the presence of reducing agents, sulfide and Fe(2+) under anaerobic conditions, suggesting that damage affects NDH-I [4Fe-4S] centers. Finally, augmented membrane protein oxidation along with reduced oxidase activity was observed in the presence of the toxicant. Also, the increased expression of genes encoding alternative terminal oxidases probably reflects a cell's change towards anaerobic respiration when facing tellurite.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , NADH Desidrogenase/metabolismo , Oxirredutases/metabolismo , Telúrio/toxicidade , Aerobiose/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/metabolismo , NADH Desidrogenase/genética , Oxirredução/efeitos dos fármacos , Oxirredutases/genética , Consumo de Oxigênio/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Superóxidos/metabolismo
8.
Appl Environ Microbiol ; 80(22): 7061-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193000

RESUMO

Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Glutationa Redutase/metabolismo , Nanoestruturas/análise , Pseudomonas/enzimologia , Telúrio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biotransformação , Estabilidade Enzimática , Glutationa Redutase/química , Glutationa Redutase/genética , Oxirredução , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/metabolismo
9.
Biometals ; 27(2): 237-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481550

RESUMO

Tellurite, the most soluble tellurium oxyanion, is extremely harmful for most microorganisms. Part of this toxicity is due to the generation of reactive oxygen species that in turn cause oxidative stress. However, the way in which tellurite interferes with cellular processes is not well understood to date. Looking for new cellular tellurite targets, we decided to evaluate the functioning of the electron transport chain in tellurite-exposed cells. In this communication we show that the E. coli ndh gene, encoding NDH-II dehydrogenase, is significantly induced in toxicant-exposed cells and that the enzyme displays tellurite-reducing activity that results in increased superoxide levels in vitro.


Assuntos
Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Oxirredutases/metabolismo , Superóxidos/metabolismo , Telúrio/metabolismo , Telúrio/farmacologia , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Oxirredução , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA