Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 813924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492595

RESUMO

COVID-19, a disease caused by the novel coronavirus SARS-CoV-2, has been drastically affecting the daily lives of millions of people. COVID-19 is described as a multiorgan disease that affects not only the respiratory tract of infected individuals, but it has considerable effects on the musculoskeletal system, causing excessive fatigue, myalgia, arthralgia, muscle weakness and skeletal muscle damage. These symptoms can persist for months, decreasing the quality of life of numerous individuals. Curiously, most studies in the scientific literature focus on patients who were hospitalized due to SARS-CoV-2 infection and little is known about the mechanism of action of COVID-19 on skeletal muscles, especially of individuals who had the mild to moderate forms of the disease (non-hospitalized patients). In this review, we focus on the current knowledge about the musculoskeletal system in COVID-19, highlighting the lack of researches investigating the mild to moderate cases of infection and pointing out why it is essential to care for these patients. Also, we will comment about the need of more experimental data to assess the musculoskeletal manifestations on COVID-19-positive individuals.

2.
Sci Rep ; 11(1): 3579, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574358

RESUMO

Duchene muscular dystrophy (DMD) is caused by the absence of the protein dystrophin, which leads to muscle weakness, progressive degeneration, and eventually death due to respiratory failure. Low-intensity eccentric training (LIET) has been used as a rehabilitation method in skeletal muscles after disuse. Recently, LIET has also been used for rehabilitating dystrophic muscles, but its effects are still unclear. The purpose of this study was to investigate the effects of 21 days of LIET in dystrophic soleus muscle. Thirty-six male mdx mice were randomized into six groups (n = 6/each): mdx sedentary group; mdx training group-3 days; mdx training group-21 days; wild-type sedentary group; wild-type training group-3 days and wild-type training group-21 days. After the training sessions, animals were euthanized, and fragments of soleus muscles were removed for immunofluorescence and histological analyses, and measurements of active force and Ca2+ sensitivity of the contractile apparatus. Muscles of the mdx training group-21 days showed an improvement in morphological characteristics and an increase of active force when compared to the sedentary mdx group. The results show that LIET can improve the functionality of dystrophic soleus muscle in mice.


Assuntos
Distrofina/genética , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos mdx/genética , Camundongos Endogâmicos mdx/fisiologia , Contração Muscular/fisiologia , Força Muscular/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Ensino
3.
Acta Histochem ; 115(5): 505-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23287280

RESUMO

Stretching is frequently used in physiotherapy to minimize or even reverse the alterations that occur after muscle disuse. Alterations that occur after 10 and 21 days of maintained stretch in soleus and plantaris muscles post-disuse were evaluated in the present study in experimental rats. Thirty adult female Wistar rats were divided into seven groups: hindlimb immobilization for 10 days; immobilization and 10 days stretched; immobilized and 21 days stretched; three control groups consisting of animals of different ages and anesthetized group. The right hindlimb was immobilized using a lightweight apparatus composed of two sections: (i) upper part: a small cotton T-shirt and, and (ii) lower part: a steel mesh to fix the ankle in plantar-flexion-shortened position. Fragments of the soleus and plantaris muscle were frozen and processed using histochemical and immunohistochemical methods. Limb immobilization caused important morphological alterations in skeletal muscle including: reduction in the number of type I fibers and an increase in type IIC fibers, reduction in the lesser diameter of type I, IIA and IIAD fibers and in the number of capillaries in soleus muscle. The stretching program applied for 10 days was insufficient to allow recovery from the disuse alterations in both muscles. However, after 21 days there were improved morphological characteristics, size and distribution of the different fibers.


Assuntos
Elevação dos Membros Posteriores , Exercícios de Alongamento Muscular , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Animais , Masculino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA