Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(29): 12208-12214, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38973674

RESUMO

The development of adsorbents for air pollutant remediation and effective monitoring is of interest. Then, the effect of the APTES functionalization ratio on the impact of the adsorption and detection of SO2 molecules was evaluated. The higher APTES functionalization material (SBA-15_6.1APTES) shows a high uptake of 1.15 mmol g-1 at 0.001 bar and 298 K. Fluorescence, time-resolved photoluminescence, and quantum yield experiments revealed a turn-on effect specifically for SO2 molecules, indicating high selectivity, suggesting host-to-guest energy transfer. Attractively, XPS measurement provided an understanding of the mechanism, suggesting hydrogen bonding and dipole-dipole interactions as the main interactions between SO2 molecules and SBA-15_6.1APTES. DFT calculations were performed to confirm these interactions. Furthermore, this study highlights the application of SBA-15 materials with different amino modifications for SO2 treatment and provides insight into the interaction mechanism using experimental techniques.

2.
Chem Commun (Camb) ; 60(29): 3970-3973, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501603

RESUMO

SO2 emissions not only affect local air quality but can also contribute to other environmental issues. Developing low-cost and robust adsorbents with high uptake and selectivity is needed to reduce SO2 emissions. Here, we show the SO2 adsorption-desorption capacity of carbon microfibers (CMFs) at 298 K. CMFs showed a reversible SO2 uptake capacity (5 mmol g-1), cyclability over ten adsorption cycles with fast kinetics and good selectivity towards SO2/CO2 at low-pressure values. Additionally, CMFs' photoluminescence response to SO2 and CO2 was evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA