Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(14): 145707, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326949

RESUMO

As different low-dimensional materials are sought to be incorporated into microelectronic devices, graphene integration is dependent on the development of band gap opening strategies. Amidst the different methods currently investigated, application of strain and use of electronic quantum confinement have shown promising results. In the present work, epitaxial graphene nanoribbons (GNR), formed by surface graphitization of SiC (0001) on crystalline step edges, were submitted to photochemical chlorination. The incorporation of Cl into the buffer layer underlying graphene increased the compressive uniaxial strain in the ribbons. Such method is a promising tool for tuning the band gap of GNRs.

2.
ACS Appl Mater Interfaces ; 8(40): 27339-27345, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27636334

RESUMO

The thermal instability of GeO2/Ge structures lasts as a barrier against the development of Ge-based metal-oxide-semiconductor devices. In the present work, stabilization was achieved through the incorporation of nitrogen into the oxide layer by thermally growing GeOxNy films in NO. With this approach, a stable layer is obtained in a single step as opposed to other nitridation techniques (like plasma immersion) which require additional processing. Significant reduction of GeO desorption from the surface and a strong barrier against additional substrate oxidation were obtained by the insertion of a small amount of nitrogen content (N/O ≈ 10%). Nuclear reaction analysis and profiling showed that nitrogen incorporation and removal occur simultaneously during film growth, yielding N to be distributed throughout the whole film, without accumulation in any particular region. Both the oxidation barrier and the lower GeO desorption rate are explained by a reduction of vacancy diffusivity inside the dielectric. This is not caused by the densification of the oxide, but is a consequence of nitrogen blockage of oxygen vacancy diffusion paths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA