Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885600

RESUMO

An electrochemical study of stress corrosion cracking (SCC) of API X70 steel in a simulated soil solution at different pH values (3, 8 and 10) was carried out. The stress conditions were implemented by slow strain rate stress test (SSRT) and the SCC process was simultaneously monitored by electrochemical impedance spectroscopy (EIS). Fracture surface analysis and corrosion product analysis were performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that the susceptibility to SCC was higher as the pH decreases. In the acid solution, hydrogen evolution can occur by H+ and H2CO3 reduction, and more atomic hydrogen can diffuse into the steel, producing embrittlement. EIS results indicated that the anodic dissolution contributed to SCC process by reducing the charge transfer resistances during the SSRT test. While SEM micrographs shown a general corrosion morphology on the longitudinal surface of samples. At higher pH (pH 8 and pH 10), the SCC susceptibility was lower, which it is attributed to the presence of corrosion products film, which could have limited the process. Using the angle phase (φ) value it was determined that the cracking process started at a point close to the yield strength (YS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA