Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38006184

RESUMO

Ionenes are poly(ionic liquids) (PILs) comprising a polymer backbone with ionic groups along the structure. Ionenes as solid-solid phase change materials are a recent research field, and some studies have demonstrated their potential in thermal dissipation into electronic devices. Eight ionenes obtained through Menshutkin reactions were synthesized and characterized. The analysis of the thermal tests allowed understanding of how the thermal properties of the polymers depend on the aliphatic nature of the dihalogenated monomer and the carbon chain length. The TGA studies concluded that the ionenes were thermally stable with T10% above 420 °C. The DSC tests showed that the prepared ionenes presented solid-solid transitions, and no melting temperature was appreciated, which rules out the possibility of solid-liquid transitions. All ionenes were soluble in common polar aprotic solvents. The hydrophilicity of the synthesized ionenes was studied by the contact angle method, and their total surface energy was calculated. Self-healing behavior was preliminarily explored using a selected sample. Our studies show that the prepared ionenes exhibit properties that make them potential candidates for applications as solid-solid phase change materials.

2.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514458

RESUMO

In this research, novel, organic, solid-liquid phase-change materials (PCMs) derived from methoxy polyethylene glycol (MPEG) and aromatic acyl chlorides (ACs) were prepared through a condensation reaction. The MPEGs were used as phase-change functional chains with different molecular weights (350, 550, 750, 2000, and 5000 g/mol). The aromatic ACs, terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), were employed as bulky linker cores. Solubility tests demonstrated that this family of PCMs is soluble in protic polar solvents such as H2O and MeOH, and insoluble in nonpolar solvents such as n-hexane. Fourier-ransform infrared spectroscopy (FT-IR UATR) and nuclear magnetic resonance (1H, 13C, DEPT 135°, COSY, HMQC, and HMBC NMR) were used to confirm the bonding of MPEG chains to ACs. The crystalline morphology of the synthesized materials was examined using polarized optical microscopy (POM), revealing the formation of spherulites with Maltese-cross-extinction patterns. Furthermore, it was confirmed that PCMs with higher molecular weights were crystalline at room temperature and exhibited an increased average spherulite size compared to their precursors. Thermal stability tests conducted through thermogravimetric analysis (TGA) indicated decomposition temperatures close to 400 °C for all PCMs. The phase-change properties were characterized by differential scanning calorimetry (DSC), revealing that the novel PCMs melted and crystallized between -23.7 and 60.2 °C and -39.9 and 45.9 °C, respectively. Moreover, the heat absorbed and released by the PCMs ranged from 57.9 to 198.8 J/g and 48.6 to 195.6 J/g, respectively. Additionally, the PCMs exhibited thermal stability after undergoing thermal cycles of melting-crystallization, indicating that energy absorption and release occurred at nearly constant temperatures. This study presents a new family of high-performance organic PCMs and demonstrates that the orientation of substituent groups in the phenylene ring influences supercooling, transition temperatures, and thermal energy storage capacity depending on the MPEG molecular weight.

3.
Membranes (Basel) ; 10(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635517

RESUMO

A set of five new aromatic poly(imide)s (PIs) incorporating pendant acyclic alkyl moieties were synthesized. The difference among them was the length and bulkiness of the pendant group, which comprises of linear alkyl chains from three to six carbon atoms, and a tert-butyl moiety. The effect of the side group length on the physical, thermal, mechanical, and gas transport properties was analyzed. All PIs exhibited low to moderate molecular weights (Mn ranged between 27.930-58.970 Da, and Mw ranged between 41.760-81.310 Da), good solubility in aprotic polar solvents, except for PI-t-4, which had a tert-butyl moiety and was soluble even in chloroform. This behaviour was probably due to the most significant bulkiness of the side group that increased the interchain distance, which was corroborated by the X-ray technique (PI-t-4 showed two d-spacing values: 5.1 and 14.3 Å). Pure gas permeabilities for several gases were reported (PI-3 (Barrer): He(52); H2(46); O2(5.4); N2(1.2); CH4(1.1); CO2(23); PI-t-4 (Barrer): He(139); H2(136); O2(16.7); N2(3.3); CH4(2.3); CO2(75); PI-5 (Barrer): He(44); H2(42); O2(5.9); N2(1.4); CH4(1.2); CO2(27); PI-6 (Barrer): He(45); H2(43); O2(6.7); N2(1.7); CH4(1.7); CO2(32)). Consistent higher volume in the side group was shown to yield the highest gas permeability. All poly(imide)s exhibited high thermal stability with 10% weight loss degradation temperature between 448-468 °C and glass transition temperature between 240-270 °C. The values associated to the tensile strength (45-87 MPa), elongation at break (3.2-11.98%), and tensile modulus (1.43-2.19 GPa) were those expected for aromatic poly(imide)s.

4.
Polymers (Basel) ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052323

RESUMO

Three new aromatic poly(imides) containing benzimidazole units in the backbone were synthesized and characterized by several spectroscopic techniques. Flexible spacer groups were incorporated into the poly(imides) structure to improve their solubility in organic solvents and their oxidative stabilization. All poly(imides) were thermally stable (Td5% > 512 °C) and had the ability to form dense flexible films. Novel composite films were successfully prepared by loading poly(imide) with ionic liquid ([Bmim]Br) at different concentrations up to 25 wt.%. The resulting materials were characterized according to their morphology and elemental composition (SEM-EDX), water uptake capability, contact angle, and oxidative degradation resistance. Results suggested that poly(imide)/ionic liquid composites would be excellent candidates for future proton conductivity measurements.

5.
Med Chem ; 9(4): 560-70, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23072588

RESUMO

The application of ligand-based drug design methods such as quantitative structure-activity relationship (QSAR) is a mandatory issue in the design of luteinizing hormone-releasing hormone (LHRH) receptor antagonists because the lack of information on the molecular structure for this target protein. The relationship between the structures and the antagonistic activities of 128 non-peptide antagonists for the LHRH receptor were modeled by using the classic QSAR methods comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best model included CoMSIA steric, electrostatic, hydrophobic and hydrogen bond donor fields, had a Q2 value of 0.780 and predicted adequately the activity of external compounds. The tridimensional contour maps generated were used to identify the key structural requirements responsible for a high biological activity of the compounds. These features should represent the ligand features involved in interactions with the target protein that modulate their potency as antagonists.


Assuntos
Relação Quantitativa Estrutura-Atividade , Receptores LHRH/antagonistas & inibidores , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Ligantes , Modelos Moleculares , Piridinas/química , Pirimidinas/química , Receptores LHRH/química , Sulfonamidas/química
6.
Chem Biol Drug Des ; 76(6): 511-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21040497

RESUMO

Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies.


Assuntos
Araquidonato 15-Lipoxigenase , Simulação por Computador , Glycine max/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Compostos Orgânicos , Enxofre , Araquidonato 15-Lipoxigenase/química , Concentração Inibidora 50 , Ligantes , Inibidores de Lipoxigenase/química , Modelos Químicos , Modelos Moleculares , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Relação Quantitativa Estrutura-Atividade , Enxofre/química , Enxofre/farmacologia
7.
Mol Divers ; 13(4): 493-500, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19350404

RESUMO

We have performed the docking of sulfonyl hydrazides complexed with cytosolic branched-chain amino acid aminotransferase (BCATc) to study the orientations and preferred active conformations of these inhibitors. The study was conducted on a selected set of 20 compounds with variation in structure and activity. In addition, the predicted inhibitor concentration (IC(50)) of the sulfonyl hydrazides as BCAT inhibitors were obtained by a quantitative structure-activity relationship (QSAR) method using three-dimensional (3D) vectors. We found that three-dimensional molecule representation of structures based on electron diffraction (3D-MoRSE) scheme contains the most relevant information related to the studied activity. The statistical parameters [cross-validate correlation coefficient (Q(2) = 0.796) and fitted correlation coefficient (R(2) = 0.899)] validated the quality of the 3D-MoRSE predictive model for 16 compounds. Additionally, this model adequately predicted four compounds that were not included in the training set.


Assuntos
Citosol/enzimologia , Hidrazinas/química , Hidrazinas/farmacologia , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Transaminases/antagonistas & inibidores , Domínio Catalítico , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Lineares , Transaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA