Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Funct Plant Biol ; 512024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008621

RESUMO

One strategy to improve olive (Olea europaea ) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (-AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20days); (3) long-period drought (25days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and -) and B(+ and -) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.


Assuntos
Micorrizas , Olea , Rizosfera , Água , Olea/microbiologia , Micorrizas/fisiologia , Água/metabolismo , Secas , Prolina/metabolismo , Simbiose , Estômatos de Plantas/fisiologia , Caules de Planta/microbiologia , Raízes de Plantas/microbiologia , Malondialdeído/metabolismo
2.
New Phytol ; 235(1): 320-332, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302658

RESUMO

The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. AMF had stronger positive effects on phosphorus nutrition than on plant growth and nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.


Assuntos
Glomeromycota , Micorrizas , Raízes de Plantas , Plantas/microbiologia , Simbiose
3.
Ann Bot ; 119(8): 1279-1294, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398457

RESUMO

Background and Aims: Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods: Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results: Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions: Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern.


Assuntos
Corsiaceae/microbiologia , Variação Genética , Glomeromycota/classificação , Micorrizas/classificação , Filogenia , Argentina , Bolívia , Chile
4.
Braz J Microbiol ; 45(2): 585-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242945

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0-50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0-10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina.


Assuntos
Biota , Micorrizas/isolamento & purificação , Cloreto de Sódio/análise , Microbiologia do Solo , Solo/química , Argentina , Contagem de Colônia Microbiana , Microscopia , Micorrizas/classificação , Micorrizas/citologia , Raízes de Plantas/microbiologia , Esporos Fúngicos/isolamento & purificação
5.
Braz. j. microbiol ; Braz. j. microbiol;45(2): 585-594, Apr.-June 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-723122

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0-50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0-10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina.


Assuntos
Biota , Micorrizas/isolamento & purificação , Microbiologia do Solo , Cloreto de Sódio/análise , Solo/química , Argentina , Contagem de Colônia Microbiana , Microscopia , Micorrizas/classificação , Micorrizas/citologia , Raízes de Plantas/microbiologia , Esporos Fúngicos/isolamento & purificação
6.
Braz. J. Microbiol. ; 45(2): 585-594, Apr.-June 2014. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: vti-27319

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0-50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0-10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina.


Assuntos
Biota , Micorrizas/isolamento & purificação , Microbiologia do Solo , Cloreto de Sódio/análise , Solo/química , Argentina , Contagem de Colônia Microbiana , Microscopia , Micorrizas/classificação , Micorrizas/citologia , Raízes de Plantas/microbiologia , Esporos Fúngicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA