Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0252765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138896

RESUMO

The communication and reproduction of insects are driven by chemical sensing. During this process, chemical compounds are transported across the sensillum lymph to the sensory neurons assisted by different types of soluble binding proteins: odorant-binding proteins (OBPs); chemosensory proteins (CSPs); some members of ML-family proteins (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition), also known as NPC2-like proteins. Potential transcripts involved in chemosensing were identified by an in silico analysis of whole-body female and male transcriptomes of the parasitic wasp Diachasmimorpha longicaudata. This analysis facilitated the characterization of fourteen OBPs (all belonging to the Classic type), seven CSPs (and two possible isoforms), and four NPC2-like proteins. A differential expression analysis by qPCR showed that eleven of these proteins (CSPs 2 and 8, OBPs 2, 3, 4, 5, 6, 9, 10, and 11, and NPC2b) were over-expressed in female antenna and two (CSP 1 and OBP 12) in the body without antennae. Foraging behavior trials (linked to RNA interference) suggest that OBPs 9, 10, and 11 are potentially involved in the female orientation to chemical cues associated with the host. OBP 12 seems to be related to physiological processes of female longevity regulation. In addition, transcriptional silencing of CSP 3 showed that this protein is potentially associated with the regulation of foraging behavior. This study supports the hypothesis that soluble binding proteins are potentially linked to fundamental physiological processes and behaviors in D. longicaudata. The results obtained here contribute useful information to increase the parasitoid performance as a biological control agent of fruit fly pest species.


Assuntos
Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Vespas/metabolismo , Animais , Comportamento Alimentar , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Receptores Odorantes/química , Receptores Odorantes/genética , Transcriptoma , Vespas/genética , Vespas/fisiologia
2.
Bull Entomol Res ; 111(2): 229-237, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32945251

RESUMO

Many parasitoid species discriminate already parasitized hosts, thus avoiding larval competition. However, females incur in superparasitism under certain circumstances. Superparasitism is commonly observed in the artificial rearing of the parasitoid Diachasmimorpha longicaudata, yet host discrimination has been previously suggested in this species. Here, we addressed host discrimination in virgin D. longicaudata females in a comprehensive way by means of direct and indirect methods, using Ceratitis capitata and Anastrepha fraterculus which are major fruit fly pests in South America. Direct methods relied on the description of the foraging behaviour of females in arenas with parasitized and non-parasitized host larvae. In the indirect methods, healthy larvae were offered to single females and the egg distributions were compared to a random distribution. We found that D. longicaudata was able to recognize parasitized host from both host species, taking 24 h since a first parasitization for A. fraterculus and 48 h for C. capitata. Indirect methods showed females with different behaviours for both host species: complete discrimination, non-random (with superparasitism), and random distributions. A larger percentage of females reared and tested on A. fraterculus incurred in superparasitism, probably associated with higher fecundity. In sum, we found strong evidence of host discrimination in D. longicaudata, detecting behavioural variability associated with the host species, the time since the first parasitization and the fecundity of the females.


Assuntos
Interações Hospedeiro-Parasita , Tephritidae/parasitologia , Vespas/fisiologia , Animais , Ceratitis capitata/parasitologia , Comportamento Alimentar , Feminino , Fertilidade , Larva/parasitologia
3.
BMC Genet ; 21(Suppl 2): 136, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339505

RESUMO

BACKGROUND: Anastrepha fraterculus sp. 1 is considered a quarantine pest in several American countries. Since chemical control applied in an integrated pest management program is the only strategy utilized against this pest, the development of pesticide-free methods, such as the Sterile Insect Technique, is being considered. The search for genes involved in sex-determination and differentiation, and in metabolic pathways associated with communication and mating behaviour, contributes with key information to the development of genetic control strategies. The aims of this work were to perform a comprehensive analysis of A. fraterculus sp. 1 transcriptome and to obtain an initial evaluation of genes associated with main metabolic pathways by the expression analysis of specific transcripts identified in embryos and adults. RESULTS: Sexually mature adults of both sexes and 72 h embryos were considered for transcriptome analysis. The de novo transcriptome assembly was fairly complete (62.9% complete BUSCO orthologs detected) with a total of 86,925 transcripts assembled and 28,756 GO annotated sequences. Paired-comparisons between libraries showed 319 transcripts differently expressed between embryos and females, 1242 between embryos and males, and 464 between sexes. Using this information and genes searches based on published studies from other tephritid species, we evaluated a set of transcripts involved in development, courtship and metabolic pathways. The qPCR analysis evidenced that the early genes serendipity alpha and transformer-2 displayed similar expression levels in the analyzed stages, while heat shock protein 27 is over-expressed in embryos and females in comparison to males. The expression of genes associated with courtship (takeout-like, odorant-binding protein 50a1) differed between males and females, independently of their reproductive status (virgin vs mated individuals). Genes associated with metabolic pathways (maltase 2-like, androgen-induced gene 1) showed differential expression between embryos and adults. Furthermore, 14,262 microsatellite motifs were identified, with 11,208 transcripts containing at least one simple sequence repeat, including 48% of di/trinucleotide motifs. CONCLUSION: Our results significantly expand the available gene space of A. fraterculus sp. 1, contributing with a fairly complete transcript database of embryos and adults. The expression analysis of the selected candidate genes, along with a set of microsatellite markers, provides a valuable resource for further genetic characterization of A. fraterculus sp. 1 and supports the development of specific genetic control strategies.


Assuntos
Comportamento Sexual Animal , Tephritidae/genética , Transcriptoma , Animais , Embrião não Mamífero , Feminino , Masculino , Repetições de Microssatélites , RNA-Seq , Reprodução , Tephritidae/embriologia
4.
BMC Genet ; 21(Suppl 2): 149, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339514

RESUMO

BACKGROUND: Anastrepha fraterculus is recognized as a quarantine pest in several American countries. This fruit fly species is native to the American continent and distributed throughout tropical and subtropical regions. It has been reported as a complex of cryptic species, and at least eight morphotypes have been described. Only one entity of this complex, formerly named Anastrepha fraterculus sp. 1, is present in Argentina. Previous cytogenetic studies on this morphotype described the presence of sex chromosome variation identified by chromosomal size and staining patterns. In this work, we expanded the cytological study of this morphotype by analyzing laboratory strains and wild populations to provide information about the frequency and geographic distribution of these sex chromosome variants. We analyzed the mitotic metaphases of individuals from four laboratory strains and five wild populations from the main fruit-producing areas of Argentina, including the northwest (Tucumán and La Rioja), northeast (Entre Ríos and Misiones), and center (Buenos Aires) of the country. RESULTS: In wild samples, we observed a high frequency of X1X1 (0.94) and X1Y5 (0.93) karyomorphs, whereas X1X2 and X1Y6 were exclusively found at a low frequency in Buenos Aires (0.07 and 0.13, respectively), Entre Ríos (0.16 and 0.14, respectively) and Tucumán (0.03 and 0.04, respectively). X2X2 and X2Y5 karyomorphs were not found in wild populations but were detected at a low frequency in laboratory strains. In fact, karyomorph frequencies differed between wild populations and laboratory strains. No significant differences among A. fraterculus wild populations were evidenced in either karyotypic or chromosomal frequencies. However, a significant correlation was observed between Y5 chromosomal frequency and latitude. CONCLUSIONS: We discuss the importance of cytogenetics to understand the possible route of invasion and dispersion of this pest in Argentina and the evolutionary forces acting under laboratory conditions, possibly driving changes in the chromosomal frequencies. Our findings provide deep and integral genetic knowledge of this species, which has become of relevance to the characterization and selection of valuable A. fraterculus sp. 1 strains for mass rearing production and SIT implementation.


Assuntos
Cromossomos de Insetos/genética , Genética Populacional , Polimorfismo Genético , Cromossomos Sexuais/genética , Tephritidae/genética , Animais , Argentina , Feminino , Geografia , Cariotipagem , Masculino
5.
Parasitol Res ; 119(2): 411-421, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31915912

RESUMO

Varroa destructor, a parasitic mite of the western honey bee, Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. Population genetics studies of the mite have provided information on two mitochondrial haplotypes infecting honey bee colonies, named K and J (after Korea and Japan, respectively, where they were originally identified). On the American continent, the K haplotype is much more prevalent, with the J haplotype only detected in some areas of Brazil. The aims of the present study were to assess the genetic diversity of V. destructor populations in the major beekeeping region of Argentina and to evaluate the presence of heteroplasmy at the nucleotide level. Phoretic mites were collected from managed A. mellifera colonies in ten localities, and four mitochondrial DNA (mtDNA) regions (COXI, ND4, ND4L, and ND5) were analyzed. Based on cytochrome oxidase subunit I (COXI) sequencing, exclusively the K haplotype of V. destructor was detected. Furthermore, two sub-haplotypes (KArg-N1 and KArg-N2) were identified from a variation in ND4 sequences and the frequency of these sub-haplotypes was found to significantly correlate with geographical latitude. The occurrence of site heteroplasmy was also evident for this gene. Therefore, ND4 appears to be a sensitive marker for detecting genetic variability in mite populations. Site heteroplasmy emerges as a phenomenon that could be relatively frequent in V. destructor.


Assuntos
Abelhas/parasitologia , DNA Mitocondrial/genética , Variação Genética/genética , Proteínas Mitocondriais/genética , Varroidae/genética , Animais , Argentina , Criação de Abelhas , Brasil , Complexo I de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Japão , NADH Desidrogenase/genética , República da Coreia
6.
BMC Microbiol ; 19(Suppl 1): 289, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870290

RESUMO

BACKGROUND: Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). RESULTS: We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. CONCLUSIONS: We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Tephritidae/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Masculino , Tipagem de Sequências Multilocus , Filogenia , Razão de Masculinidade , Comportamento Sexual Animal , Wolbachia/genética
7.
BMC Microbiol ; 19(Suppl 1): 283, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870309

RESUMO

BACKGROUND: The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. RESULTS: AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males' survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. CONCLUSIONS: Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males' fitness, although the physiological mechanisms still need further studies.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Comportamento Sexual Animal/efeitos dos fármacos , Tephritidae/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Estado Nutricional , Controle Biológico de Vetores , Filogenia , América do Sul , Tephritidae/efeitos dos fármacos , Tephritidae/microbiologia
8.
PLoS One ; 14(6): e0214698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199808

RESUMO

Exposure to plant compounds and analogues of juvenile hormone (JH) increase male mating success in several species of tephritid fruit flies. Most of these species exhibit a lek mating system, characterized by active female choice. Although the pattern of enhanced male mating success is evident, few studies have investigated what benefits, if any, females gain via choice of exposed males in the lek mating system. In the South American fruit fly, Anastrepha fraterculus, females mate preferentially with males that were exposed to volatiles released by guava fruit or treated with methoprene (a JH analogue). Here, we tested the hypothesis that female choice confers direct fitness benefits in terms of fecundity and fertility. We first carried out mate choice experiments presenting females with males treated and non-treated with guava volatiles or, alternatively, treated and non-treated with methoprene. After we confirmed female preference for treated males, we compared the fecundity and fertility between females mated with treated males and non-treated ones. We found that A. fraterculus females that mated with males exposed to guava volatiles showed higher fecundity than females mated to non-exposed males. On the other hand, females that mated methoprene-treated males showed no evidence of direct benefits. Our findings represent the first evidence of a direct benefit associated to female preference for males that were exposed to host fruit odors in tephritid fruit flies. Differences between the two treatments are discussed in evolutionary and pest management terms.


Assuntos
Preferência de Acasalamento Animal/fisiologia , Metoprene/farmacologia , Tephritidae/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Feminino , Fertilidade/efeitos dos fármacos , Masculino , Psidium/química , Tephritidae/efeitos dos fármacos
9.
BMC Genomics ; 17(1): 793, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729028

RESUMO

BACKGROUND: Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is a solitary parasitoid of Tephritidae (Diptera) fruit flies of economic importance currently being mass-reared in bio-factories and successfully used worldwide. A peculiar biological aspect of Hymenoptera is its haplo-diploid life cycle, where females (diploid) develop from fertilized eggs and males (haploid) from unfertilized eggs. Diploid males were described in many species and recently evidenced in D. longicaudata by mean of inbreeding studies. Sex determination in this parasitoid is based on the Complementary Sex Determination (CSD) system, with alleles from at least one locus involved in early steps of this pathway. Since limited information is available about genetics of this parasitoid species, a deeper analysis on D. longicaudata's genomics is required to provide molecular tools for achieving a more cost effective production under artificial rearing conditions. RESULTS: We report here the first transcriptome analysis of male-larvae, adult females and adult males of D. longicaudata using 454-pyrosequencing. A total of 469766 reads were analyzed and 8483 high-quality isotigs were assembled. After functional annotation, a total of 51686 unigenes were produced, from which, 7021 isotigs and 20227 singletons had at least one BLAST hit against the NCBI non-redundant protein database. A preliminary comparison of adult female and male evidenced that 98 transcripts showed differential expression profiles, with at least a 10-fold difference. Among the functionally annotated transcripts we detected four sequences potentially involved in sex determination and three homologues to two known genes involved in the sex determination cascade. Finally, a total of 4674SimpleSequence Repeats (SSRs) were in silico identified and characterized. CONCLUSION: The information obtained here will significantly contribute to the development of D. longicaudata functional genomics, genetics and population-based genome studies. Thousands of new microsatellite markers were identified as toolkits for population genetics analysis. The transcriptome characterized here is the starting point to elucidate the molecular bases of the sex determination mechanism in this species.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Transcriptoma , Vespas/genética , Animais , Biologia Computacional/métodos , Feminino , Ontologia Genética , Variação Genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Larva , Masculino , Repetições de Microssatélites , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Processos de Determinação Sexual
10.
PLoS One ; 11(6): e0157192, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362546

RESUMO

Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications.


Assuntos
Cromossomos de Insetos , Cromossomos Politênicos , Tephritidae/genética , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Análise Citogenética , Feminino , Cariótipo , Cariotipagem , Masculino , Mitose , Glândulas Salivares
11.
PLoS One ; 11(3): e0152222, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007298

RESUMO

Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging.


Assuntos
Vespas/fisiologia , Animais , Citrus sinensis , Ecossistema , Comportamento Alimentar/fisiologia , Feminino , Ficus , Frutas , Malus , Prunus persica , Tephritidae/fisiologia
12.
PLoS One ; 10(4): e0124250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923584

RESUMO

BACKGROUND: Plant chemicals can affect reproductive strategies of tephritid fruit flies by influencing sex pheromone communication and increasing male mating competitiveness. OBJECTIVE AND METHODOLOGY: We explored whether exposure of Anastrepha fraterculus males to guava fruit volatiles and to a synthetic blend of volatile compounds released by this fruit affects the sexual performance of wild and laboratory flies. By means of bioassays and pheromone collection we investigated the mechanism underlying this phenomenon. RESULTS: Guava volatile exposure enhanced male mating success and positively affected male calling behavior and pheromone release in laboratory and wild males. Changes in male behavior appear to be particularly important during the initial phase of the sexual activity period, when most of the mating pairs are formed. Exposure of laboratory males to a subset of guava fruit volatiles enhanced mating success, showing that the response to the fruit might be mimicked artificially. CONCLUSIONS: Volatiles of guava seem to influence male mating success through an enhancement of chemical and physical signals related to the communication between sexes. This finding has important implications for the management of this pest species through the Sterile Insect Technique. We discuss the possibility of using artificial blends to improve the sexual competitiveness of sterile males.


Assuntos
Psidium/química , Comportamento Sexual Animal/efeitos dos fármacos , Tephritidae/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Feminino , Frutas/química , Frutas/metabolismo , Masculino , Feromônios/metabolismo , Psidium/metabolismo , Reprodução/fisiologia
13.
PLoS One ; 10(3): e0119619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789748

RESUMO

We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general.


Assuntos
Evolução Biológica , Processos de Determinação Sexual/genética , Vespas/genética , Alelos , Animais , Diploide , Feminino , Haploidia , Masculino , Razão de Masculinidade , Vespas/fisiologia
14.
Zookeys ; (540): 83-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798255

RESUMO

Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrepha fraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrepha fraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrepha fraterculus populations, focused on the prevalence of X-Y arrangements.

15.
Zookeys ; (540): 157-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798258

RESUMO

We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area.

16.
BMC Genet ; 15 Suppl 2: S12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25471175

RESUMO

Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.


Assuntos
Controle Biológico de Vetores , Tephritidae/genética , Animais , Argentina , Biotecnologia , Cromossomos de Insetos/efeitos da radiação , Feminino , Genética Populacional , Infertilidade/genética , Masculino , Controle Biológico de Vetores/métodos , Radiação , Doses de Radiação , Comportamento Sexual Animal , Tephritidae/fisiologia , Tephritidae/efeitos da radiação
17.
J Insect Physiol ; 58(1): 1-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21907717

RESUMO

In the context of the sterile insect technique (SIT), mass-rearing and male irradiation are imperative. Post-teneral treatments such as the addition of protein in adult's male diet and male hormonal treatment are used to improve sexual performance and to accelerate sexual maturation. In this work we investigated the effect of male accessory glands products (AGPs) on female receptivity of the South American fruit fly Anastrepha fraterculus (Wiedemann), and the effect of strain rearing history, male irradiation, male diet and hormonal treatment on AGPs. Injections of aqueous extracts of male accessory glands into the abdomen of females reduced their receptivity. The AGPs from laboratory males were more effective in inhibiting female receptivity, compared to AGPs from wild males, irrespective of females' origin. The AGPs from fertile males were more effective than AGPs from sterile males. The AGPs from protein-fed males were more effective than AGPs from sugar-fed males. Finally, the AGPs of males treated with juvenile hormone were less effective in inhibiting female receptivity than AGPs of untreated males. We conclude that inhibition of sexual receptivity of A. fraterculus mated females is mediated by products in male accessory gland's and the way that these products act vary widely according to the effect of extrinsic factors. We discuss the results in the perspective of the SIT application for A. fraterculus.


Assuntos
Fatores Biológicos/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Tephritidae/efeitos dos fármacos , Animais , Fatores Biológicos/isolamento & purificação , Glândulas Exócrinas/química , Glândulas Exócrinas/metabolismo , Feminino , Raios gama , Masculino , Metoprene , Tephritidae/efeitos da radiação
18.
J Insect Physiol ; 57(11): 1501-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21864536

RESUMO

Male physiological condition can affect his ability to modulate female sexual receptivity. Thus, studying this aspect can have biological and practical implications. Here, we examine how male nutritional status affected the amount of sperm stored, remating rate and refractory period of the tephritid fruit fly Anastrepha fraterculus (Wiedemann) females. Both wild and laboratory flies were evaluated. We also examine female sperm storage patterns. Experiments were carried out by manipulating male adult diet and exposing these males to virgin females. Females mated with differently treated males were either dissected to count the amount of sperm stored or exposed to virgin males to determine remating rate and the length of the refractory period. We found that male nutritional status affected the amount of the sperm stored and the renewal of sexual receptivity in wild flies. For laboratory flies, male nutritional status affected the length of the refractory period but not the amount of sperm stored by females. In addition, we report that the ventral receptacle is not an important organ of sperm storage in this species. We conclude that male nutritional condition influences the ability to modulate female sexual receptivity, possibly through a combination of the quantity and quality of the ejaculate. From an applied perspective, providing males with an enriched diet will likely result in increased efficacy of the sterile insect technique.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Comportamento Sexual Animal/fisiologia , Tephritidae/fisiologia , Animais , Feminino , Inseminação , Masculino , Espermatozoides
19.
J Insect Sci ; 10: 56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20569133

RESUMO

The morphological changes experienced during the immature stages of the solitary parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae: Opiinae) were studied. This natural enemy of several species of tephritid fruit flies is widely used in biological control strategies. Immature stages are poorly understood in endoparasitoids because they exist within the host. In the present work, developmental processes are described for this species, reared in Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) larvae under controlled environmental conditions. At 25 degrees C, 85% RH, and with an 18:6 L:D photoperiod, preimaginal development takes about 16 days. Five preimaginal stages can be described: egg, three larval instars, prepupa, pupa, and pharate adult. Superparasitism was found in 20% of the host pupae, and the number of oviposition scars was positively correlated with the number of parasitoid larvae per host puparium. The results are compared and discussed with previous studies on related species.


Assuntos
Tephritidae/parasitologia , Vespas/crescimento & desenvolvimento , Vespas/fisiologia , Animais , Feminino , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Óvulo/fisiologia , Pupa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA